Evaluate
\frac{22}{7}\approx 3.142857143
Factor
\frac{2 \cdot 11}{7} = 3\frac{1}{7} = 3.142857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)66}\\\end{array}
Use the 1^{st} digit 6 from dividend 66
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)66}\\\end{array}
Since 6 is less than 21, use the next digit 6 from dividend 66 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)66}\\\end{array}
Use the 2^{nd} digit 6 from dividend 66
\begin{array}{l}\phantom{21)}03\phantom{4}\\21\overline{)66}\\\phantom{21)}\underline{\phantom{}63\phantom{}}\\\phantom{21)9}3\\\end{array}
Find closest multiple of 21 to 66. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 66 to get reminder 3. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }3
Since 3 is less than 21, stop the division. The reminder is 3. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}