Evaluate
\frac{6565555}{2642}\approx 2485.07002271
Factor
\frac{5 \cdot 631 \cdot 2081}{2 \cdot 1321} = 2485\frac{185}{2642} = 2485.0700227100683
Share
Copied to clipboard
\begin{array}{l}\phantom{2642)}\phantom{1}\\2642\overline{)6565555}\\\end{array}
Use the 1^{st} digit 6 from dividend 6565555
\begin{array}{l}\phantom{2642)}0\phantom{2}\\2642\overline{)6565555}\\\end{array}
Since 6 is less than 2642, use the next digit 5 from dividend 6565555 and add 0 to the quotient
\begin{array}{l}\phantom{2642)}0\phantom{3}\\2642\overline{)6565555}\\\end{array}
Use the 2^{nd} digit 5 from dividend 6565555
\begin{array}{l}\phantom{2642)}00\phantom{4}\\2642\overline{)6565555}\\\end{array}
Since 65 is less than 2642, use the next digit 6 from dividend 6565555 and add 0 to the quotient
\begin{array}{l}\phantom{2642)}00\phantom{5}\\2642\overline{)6565555}\\\end{array}
Use the 3^{rd} digit 6 from dividend 6565555
\begin{array}{l}\phantom{2642)}000\phantom{6}\\2642\overline{)6565555}\\\end{array}
Since 656 is less than 2642, use the next digit 5 from dividend 6565555 and add 0 to the quotient
\begin{array}{l}\phantom{2642)}000\phantom{7}\\2642\overline{)6565555}\\\end{array}
Use the 4^{th} digit 5 from dividend 6565555
\begin{array}{l}\phantom{2642)}0002\phantom{8}\\2642\overline{)6565555}\\\phantom{2642)}\underline{\phantom{}5284\phantom{999}}\\\phantom{2642)}1281\\\end{array}
Find closest multiple of 2642 to 6565. We see that 2 \times 2642 = 5284 is the nearest. Now subtract 5284 from 6565 to get reminder 1281. Add 2 to quotient.
\begin{array}{l}\phantom{2642)}0002\phantom{9}\\2642\overline{)6565555}\\\phantom{2642)}\underline{\phantom{}5284\phantom{999}}\\\phantom{2642)}12815\\\end{array}
Use the 5^{th} digit 5 from dividend 6565555
\begin{array}{l}\phantom{2642)}00024\phantom{10}\\2642\overline{)6565555}\\\phantom{2642)}\underline{\phantom{}5284\phantom{999}}\\\phantom{2642)}12815\\\phantom{2642)}\underline{\phantom{}10568\phantom{99}}\\\phantom{2642)9}2247\\\end{array}
Find closest multiple of 2642 to 12815. We see that 4 \times 2642 = 10568 is the nearest. Now subtract 10568 from 12815 to get reminder 2247. Add 4 to quotient.
\begin{array}{l}\phantom{2642)}00024\phantom{11}\\2642\overline{)6565555}\\\phantom{2642)}\underline{\phantom{}5284\phantom{999}}\\\phantom{2642)}12815\\\phantom{2642)}\underline{\phantom{}10568\phantom{99}}\\\phantom{2642)9}22475\\\end{array}
Use the 6^{th} digit 5 from dividend 6565555
\begin{array}{l}\phantom{2642)}000248\phantom{12}\\2642\overline{)6565555}\\\phantom{2642)}\underline{\phantom{}5284\phantom{999}}\\\phantom{2642)}12815\\\phantom{2642)}\underline{\phantom{}10568\phantom{99}}\\\phantom{2642)9}22475\\\phantom{2642)}\underline{\phantom{9}21136\phantom{9}}\\\phantom{2642)99}1339\\\end{array}
Find closest multiple of 2642 to 22475. We see that 8 \times 2642 = 21136 is the nearest. Now subtract 21136 from 22475 to get reminder 1339. Add 8 to quotient.
\begin{array}{l}\phantom{2642)}000248\phantom{13}\\2642\overline{)6565555}\\\phantom{2642)}\underline{\phantom{}5284\phantom{999}}\\\phantom{2642)}12815\\\phantom{2642)}\underline{\phantom{}10568\phantom{99}}\\\phantom{2642)9}22475\\\phantom{2642)}\underline{\phantom{9}21136\phantom{9}}\\\phantom{2642)99}13395\\\end{array}
Use the 7^{th} digit 5 from dividend 6565555
\begin{array}{l}\phantom{2642)}0002485\phantom{14}\\2642\overline{)6565555}\\\phantom{2642)}\underline{\phantom{}5284\phantom{999}}\\\phantom{2642)}12815\\\phantom{2642)}\underline{\phantom{}10568\phantom{99}}\\\phantom{2642)9}22475\\\phantom{2642)}\underline{\phantom{9}21136\phantom{9}}\\\phantom{2642)99}13395\\\phantom{2642)}\underline{\phantom{99}13210\phantom{}}\\\phantom{2642)9999}185\\\end{array}
Find closest multiple of 2642 to 13395. We see that 5 \times 2642 = 13210 is the nearest. Now subtract 13210 from 13395 to get reminder 185. Add 5 to quotient.
\text{Quotient: }2485 \text{Reminder: }185
Since 185 is less than 2642, stop the division. The reminder is 185. The topmost line 0002485 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2485.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}