Evaluate
\frac{647}{42}\approx 15.404761905
Factor
\frac{647}{2 \cdot 3 \cdot 7} = 15\frac{17}{42} = 15.404761904761905
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)647}\\\end{array}
Use the 1^{st} digit 6 from dividend 647
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)647}\\\end{array}
Since 6 is less than 42, use the next digit 4 from dividend 647 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)647}\\\end{array}
Use the 2^{nd} digit 4 from dividend 647
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)647}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}22\\\end{array}
Find closest multiple of 42 to 64. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 64 to get reminder 22. Add 1 to quotient.
\begin{array}{l}\phantom{42)}01\phantom{5}\\42\overline{)647}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}227\\\end{array}
Use the 3^{rd} digit 7 from dividend 647
\begin{array}{l}\phantom{42)}015\phantom{6}\\42\overline{)647}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}227\\\phantom{42)}\underline{\phantom{}210\phantom{}}\\\phantom{42)9}17\\\end{array}
Find closest multiple of 42 to 227. We see that 5 \times 42 = 210 is the nearest. Now subtract 210 from 227 to get reminder 17. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }17
Since 17 is less than 42, stop the division. The reminder is 17. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}