Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(64+\left(n-1\right)\times 2\right)n=1716
Multiply both sides of the equation by 2.
\left(64+2n-2\right)n=1716
Use the distributive property to multiply n-1 by 2.
\left(62+2n\right)n=1716
Subtract 2 from 64 to get 62.
62n+2n^{2}=1716
Use the distributive property to multiply 62+2n by n.
62n+2n^{2}-1716=0
Subtract 1716 from both sides.
2n^{2}+62n-1716=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-62±\sqrt{62^{2}-4\times 2\left(-1716\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 62 for b, and -1716 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-62±\sqrt{3844-4\times 2\left(-1716\right)}}{2\times 2}
Square 62.
n=\frac{-62±\sqrt{3844-8\left(-1716\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{-62±\sqrt{3844+13728}}{2\times 2}
Multiply -8 times -1716.
n=\frac{-62±\sqrt{17572}}{2\times 2}
Add 3844 to 13728.
n=\frac{-62±2\sqrt{4393}}{2\times 2}
Take the square root of 17572.
n=\frac{-62±2\sqrt{4393}}{4}
Multiply 2 times 2.
n=\frac{2\sqrt{4393}-62}{4}
Now solve the equation n=\frac{-62±2\sqrt{4393}}{4} when ± is plus. Add -62 to 2\sqrt{4393}.
n=\frac{\sqrt{4393}-31}{2}
Divide -62+2\sqrt{4393} by 4.
n=\frac{-2\sqrt{4393}-62}{4}
Now solve the equation n=\frac{-62±2\sqrt{4393}}{4} when ± is minus. Subtract 2\sqrt{4393} from -62.
n=\frac{-\sqrt{4393}-31}{2}
Divide -62-2\sqrt{4393} by 4.
n=\frac{\sqrt{4393}-31}{2} n=\frac{-\sqrt{4393}-31}{2}
The equation is now solved.
\left(64+\left(n-1\right)\times 2\right)n=1716
Multiply both sides of the equation by 2.
\left(64+2n-2\right)n=1716
Use the distributive property to multiply n-1 by 2.
\left(62+2n\right)n=1716
Subtract 2 from 64 to get 62.
62n+2n^{2}=1716
Use the distributive property to multiply 62+2n by n.
2n^{2}+62n=1716
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2n^{2}+62n}{2}=\frac{1716}{2}
Divide both sides by 2.
n^{2}+\frac{62}{2}n=\frac{1716}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}+31n=\frac{1716}{2}
Divide 62 by 2.
n^{2}+31n=858
Divide 1716 by 2.
n^{2}+31n+\left(\frac{31}{2}\right)^{2}=858+\left(\frac{31}{2}\right)^{2}
Divide 31, the coefficient of the x term, by 2 to get \frac{31}{2}. Then add the square of \frac{31}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+31n+\frac{961}{4}=858+\frac{961}{4}
Square \frac{31}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+31n+\frac{961}{4}=\frac{4393}{4}
Add 858 to \frac{961}{4}.
\left(n+\frac{31}{2}\right)^{2}=\frac{4393}{4}
Factor n^{2}+31n+\frac{961}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{31}{2}\right)^{2}}=\sqrt{\frac{4393}{4}}
Take the square root of both sides of the equation.
n+\frac{31}{2}=\frac{\sqrt{4393}}{2} n+\frac{31}{2}=-\frac{\sqrt{4393}}{2}
Simplify.
n=\frac{\sqrt{4393}-31}{2} n=\frac{-\sqrt{4393}-31}{2}
Subtract \frac{31}{2} from both sides of the equation.