Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)64}\\\end{array}
Use the 1^{st} digit 6 from dividend 64
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)64}\\\end{array}
Since 6 is less than 48, use the next digit 4 from dividend 64 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)64}\\\end{array}
Use the 2^{nd} digit 4 from dividend 64
\begin{array}{l}\phantom{48)}01\phantom{4}\\48\overline{)64}\\\phantom{48)}\underline{\phantom{}48\phantom{}}\\\phantom{48)}16\\\end{array}
Find closest multiple of 48 to 64. We see that 1 \times 48 = 48 is the nearest. Now subtract 48 from 64 to get reminder 16. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }16
Since 16 is less than 48, stop the division. The reminder is 16. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}