Evaluate
\frac{64}{25}=2.56
Factor
\frac{2 ^ {6}}{5 ^ {2}} = 2\frac{14}{25} = 2.56
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)64}\\\end{array}
Use the 1^{st} digit 6 from dividend 64
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)64}\\\end{array}
Since 6 is less than 25, use the next digit 4 from dividend 64 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)64}\\\end{array}
Use the 2^{nd} digit 4 from dividend 64
\begin{array}{l}\phantom{25)}02\phantom{4}\\25\overline{)64}\\\phantom{25)}\underline{\phantom{}50\phantom{}}\\\phantom{25)}14\\\end{array}
Find closest multiple of 25 to 64. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 64 to get reminder 14. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }14
Since 14 is less than 25, stop the division. The reminder is 14. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}