Evaluate
\frac{314\sqrt{61622590}}{7438277}\approx 0.331380749
Share
Copied to clipboard
\frac{6280\sqrt{\frac{9}{10}+616225}}{9\times 984^{2}+10\times 785^{2}}
Calculate 785 to the power of 2 and get 616225.
\frac{6280\sqrt{\frac{9}{10}+\frac{6162250}{10}}}{9\times 984^{2}+10\times 785^{2}}
Convert 616225 to fraction \frac{6162250}{10}.
\frac{6280\sqrt{\frac{9+6162250}{10}}}{9\times 984^{2}+10\times 785^{2}}
Since \frac{9}{10} and \frac{6162250}{10} have the same denominator, add them by adding their numerators.
\frac{6280\sqrt{\frac{6162259}{10}}}{9\times 984^{2}+10\times 785^{2}}
Add 9 and 6162250 to get 6162259.
\frac{6280\times \frac{\sqrt{6162259}}{\sqrt{10}}}{9\times 984^{2}+10\times 785^{2}}
Rewrite the square root of the division \sqrt{\frac{6162259}{10}} as the division of square roots \frac{\sqrt{6162259}}{\sqrt{10}}.
\frac{6280\times \frac{\sqrt{6162259}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}}{9\times 984^{2}+10\times 785^{2}}
Rationalize the denominator of \frac{\sqrt{6162259}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{6280\times \frac{\sqrt{6162259}\sqrt{10}}{10}}{9\times 984^{2}+10\times 785^{2}}
The square of \sqrt{10} is 10.
\frac{6280\times \frac{\sqrt{61622590}}{10}}{9\times 984^{2}+10\times 785^{2}}
To multiply \sqrt{6162259} and \sqrt{10}, multiply the numbers under the square root.
\frac{628\sqrt{61622590}}{9\times 984^{2}+10\times 785^{2}}
Cancel out 10, the greatest common factor in 6280 and 10.
\frac{628\sqrt{61622590}}{9\times 968256+10\times 785^{2}}
Calculate 984 to the power of 2 and get 968256.
\frac{628\sqrt{61622590}}{8714304+10\times 785^{2}}
Multiply 9 and 968256 to get 8714304.
\frac{628\sqrt{61622590}}{8714304+10\times 616225}
Calculate 785 to the power of 2 and get 616225.
\frac{628\sqrt{61622590}}{8714304+6162250}
Multiply 10 and 616225 to get 6162250.
\frac{628\sqrt{61622590}}{14876554}
Add 8714304 and 6162250 to get 14876554.
\frac{314}{7438277}\sqrt{61622590}
Divide 628\sqrt{61622590} by 14876554 to get \frac{314}{7438277}\sqrt{61622590}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}