Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6280\sqrt{\frac{9}{10}+616225}}{9\times 984^{2}+10\times 785^{2}}
Calculate 785 to the power of 2 and get 616225.
\frac{6280\sqrt{\frac{9}{10}+\frac{6162250}{10}}}{9\times 984^{2}+10\times 785^{2}}
Convert 616225 to fraction \frac{6162250}{10}.
\frac{6280\sqrt{\frac{9+6162250}{10}}}{9\times 984^{2}+10\times 785^{2}}
Since \frac{9}{10} and \frac{6162250}{10} have the same denominator, add them by adding their numerators.
\frac{6280\sqrt{\frac{6162259}{10}}}{9\times 984^{2}+10\times 785^{2}}
Add 9 and 6162250 to get 6162259.
\frac{6280\times \frac{\sqrt{6162259}}{\sqrt{10}}}{9\times 984^{2}+10\times 785^{2}}
Rewrite the square root of the division \sqrt{\frac{6162259}{10}} as the division of square roots \frac{\sqrt{6162259}}{\sqrt{10}}.
\frac{6280\times \frac{\sqrt{6162259}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}}{9\times 984^{2}+10\times 785^{2}}
Rationalize the denominator of \frac{\sqrt{6162259}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{6280\times \frac{\sqrt{6162259}\sqrt{10}}{10}}{9\times 984^{2}+10\times 785^{2}}
The square of \sqrt{10} is 10.
\frac{6280\times \frac{\sqrt{61622590}}{10}}{9\times 984^{2}+10\times 785^{2}}
To multiply \sqrt{6162259} and \sqrt{10}, multiply the numbers under the square root.
\frac{628\sqrt{61622590}}{9\times 984^{2}+10\times 785^{2}}
Cancel out 10, the greatest common factor in 6280 and 10.
\frac{628\sqrt{61622590}}{9\times 968256+10\times 785^{2}}
Calculate 984 to the power of 2 and get 968256.
\frac{628\sqrt{61622590}}{8714304+10\times 785^{2}}
Multiply 9 and 968256 to get 8714304.
\frac{628\sqrt{61622590}}{8714304+10\times 616225}
Calculate 785 to the power of 2 and get 616225.
\frac{628\sqrt{61622590}}{8714304+6162250}
Multiply 10 and 616225 to get 6162250.
\frac{628\sqrt{61622590}}{14876554}
Add 8714304 and 6162250 to get 14876554.
\frac{314}{7438277}\sqrt{61622590}
Divide 628\sqrt{61622590} by 14876554 to get \frac{314}{7438277}\sqrt{61622590}.