Solve for x
x = \frac{5 \sqrt{2609} + 221}{64} \approx 7.443622747
x=\frac{221-5\sqrt{2609}}{64}\approx -0.537372747
Graph
Share
Copied to clipboard
\left(x^{2}-4\right)\times 62+2\left(x-2\right)\left(x+2\right)=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-2\right)\left(x+2\right), the least common multiple of 2,2\left(x+2\right),2\left(x-2\right).
62x^{2}-248+2\left(x-2\right)\left(x+2\right)=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Use the distributive property to multiply x^{2}-4 by 62.
62x^{2}-248+\left(2x-4\right)\left(x+2\right)=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Use the distributive property to multiply 2 by x-2.
62x^{2}-248+2x^{2}-8=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Use the distributive property to multiply 2x-4 by x+2 and combine like terms.
64x^{2}-248-8=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Combine 62x^{2} and 2x^{2} to get 64x^{2}.
64x^{2}-256=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Subtract 8 from -248 to get -256.
64x^{2}-256=221x-442+\left(x+2\right)\times 221
Use the distributive property to multiply x-2 by 221.
64x^{2}-256=221x-442+221x+442
Use the distributive property to multiply x+2 by 221.
64x^{2}-256=442x-442+442
Combine 221x and 221x to get 442x.
64x^{2}-256=442x
Add -442 and 442 to get 0.
64x^{2}-256-442x=0
Subtract 442x from both sides.
64x^{2}-442x-256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-442\right)±\sqrt{\left(-442\right)^{2}-4\times 64\left(-256\right)}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, -442 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-442\right)±\sqrt{195364-4\times 64\left(-256\right)}}{2\times 64}
Square -442.
x=\frac{-\left(-442\right)±\sqrt{195364-256\left(-256\right)}}{2\times 64}
Multiply -4 times 64.
x=\frac{-\left(-442\right)±\sqrt{195364+65536}}{2\times 64}
Multiply -256 times -256.
x=\frac{-\left(-442\right)±\sqrt{260900}}{2\times 64}
Add 195364 to 65536.
x=\frac{-\left(-442\right)±10\sqrt{2609}}{2\times 64}
Take the square root of 260900.
x=\frac{442±10\sqrt{2609}}{2\times 64}
The opposite of -442 is 442.
x=\frac{442±10\sqrt{2609}}{128}
Multiply 2 times 64.
x=\frac{10\sqrt{2609}+442}{128}
Now solve the equation x=\frac{442±10\sqrt{2609}}{128} when ± is plus. Add 442 to 10\sqrt{2609}.
x=\frac{5\sqrt{2609}+221}{64}
Divide 442+10\sqrt{2609} by 128.
x=\frac{442-10\sqrt{2609}}{128}
Now solve the equation x=\frac{442±10\sqrt{2609}}{128} when ± is minus. Subtract 10\sqrt{2609} from 442.
x=\frac{221-5\sqrt{2609}}{64}
Divide 442-10\sqrt{2609} by 128.
x=\frac{5\sqrt{2609}+221}{64} x=\frac{221-5\sqrt{2609}}{64}
The equation is now solved.
\left(x^{2}-4\right)\times 62+2\left(x-2\right)\left(x+2\right)=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-2\right)\left(x+2\right), the least common multiple of 2,2\left(x+2\right),2\left(x-2\right).
62x^{2}-248+2\left(x-2\right)\left(x+2\right)=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Use the distributive property to multiply x^{2}-4 by 62.
62x^{2}-248+\left(2x-4\right)\left(x+2\right)=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Use the distributive property to multiply 2 by x-2.
62x^{2}-248+2x^{2}-8=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Use the distributive property to multiply 2x-4 by x+2 and combine like terms.
64x^{2}-248-8=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Combine 62x^{2} and 2x^{2} to get 64x^{2}.
64x^{2}-256=\left(x-2\right)\times 221+\left(x+2\right)\times 221
Subtract 8 from -248 to get -256.
64x^{2}-256=221x-442+\left(x+2\right)\times 221
Use the distributive property to multiply x-2 by 221.
64x^{2}-256=221x-442+221x+442
Use the distributive property to multiply x+2 by 221.
64x^{2}-256=442x-442+442
Combine 221x and 221x to get 442x.
64x^{2}-256=442x
Add -442 and 442 to get 0.
64x^{2}-256-442x=0
Subtract 442x from both sides.
64x^{2}-442x=256
Add 256 to both sides. Anything plus zero gives itself.
\frac{64x^{2}-442x}{64}=\frac{256}{64}
Divide both sides by 64.
x^{2}+\left(-\frac{442}{64}\right)x=\frac{256}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}-\frac{221}{32}x=\frac{256}{64}
Reduce the fraction \frac{-442}{64} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{221}{32}x=4
Divide 256 by 64.
x^{2}-\frac{221}{32}x+\left(-\frac{221}{64}\right)^{2}=4+\left(-\frac{221}{64}\right)^{2}
Divide -\frac{221}{32}, the coefficient of the x term, by 2 to get -\frac{221}{64}. Then add the square of -\frac{221}{64} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{221}{32}x+\frac{48841}{4096}=4+\frac{48841}{4096}
Square -\frac{221}{64} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{221}{32}x+\frac{48841}{4096}=\frac{65225}{4096}
Add 4 to \frac{48841}{4096}.
\left(x-\frac{221}{64}\right)^{2}=\frac{65225}{4096}
Factor x^{2}-\frac{221}{32}x+\frac{48841}{4096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{221}{64}\right)^{2}}=\sqrt{\frac{65225}{4096}}
Take the square root of both sides of the equation.
x-\frac{221}{64}=\frac{5\sqrt{2609}}{64} x-\frac{221}{64}=-\frac{5\sqrt{2609}}{64}
Simplify.
x=\frac{5\sqrt{2609}+221}{64} x=\frac{221-5\sqrt{2609}}{64}
Add \frac{221}{64} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}