Evaluate
\frac{619}{219}\approx 2.826484018
Factor
\frac{619}{3 \cdot 73} = 2\frac{181}{219} = 2.82648401826484
Share
Copied to clipboard
\begin{array}{l}\phantom{219)}\phantom{1}\\219\overline{)619}\\\end{array}
Use the 1^{st} digit 6 from dividend 619
\begin{array}{l}\phantom{219)}0\phantom{2}\\219\overline{)619}\\\end{array}
Since 6 is less than 219, use the next digit 1 from dividend 619 and add 0 to the quotient
\begin{array}{l}\phantom{219)}0\phantom{3}\\219\overline{)619}\\\end{array}
Use the 2^{nd} digit 1 from dividend 619
\begin{array}{l}\phantom{219)}00\phantom{4}\\219\overline{)619}\\\end{array}
Since 61 is less than 219, use the next digit 9 from dividend 619 and add 0 to the quotient
\begin{array}{l}\phantom{219)}00\phantom{5}\\219\overline{)619}\\\end{array}
Use the 3^{rd} digit 9 from dividend 619
\begin{array}{l}\phantom{219)}002\phantom{6}\\219\overline{)619}\\\phantom{219)}\underline{\phantom{}438\phantom{}}\\\phantom{219)}181\\\end{array}
Find closest multiple of 219 to 619. We see that 2 \times 219 = 438 is the nearest. Now subtract 438 from 619 to get reminder 181. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }181
Since 181 is less than 219, stop the division. The reminder is 181. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}