Evaluate
\frac{61629}{9169}\approx 6.721452721
Factor
\frac{3 \cdot 20543}{53 \cdot 173} = 6\frac{6615}{9169} = 6.721452721125532
Share
Copied to clipboard
\begin{array}{l}\phantom{9169)}\phantom{1}\\9169\overline{)61629}\\\end{array}
Use the 1^{st} digit 6 from dividend 61629
\begin{array}{l}\phantom{9169)}0\phantom{2}\\9169\overline{)61629}\\\end{array}
Since 6 is less than 9169, use the next digit 1 from dividend 61629 and add 0 to the quotient
\begin{array}{l}\phantom{9169)}0\phantom{3}\\9169\overline{)61629}\\\end{array}
Use the 2^{nd} digit 1 from dividend 61629
\begin{array}{l}\phantom{9169)}00\phantom{4}\\9169\overline{)61629}\\\end{array}
Since 61 is less than 9169, use the next digit 6 from dividend 61629 and add 0 to the quotient
\begin{array}{l}\phantom{9169)}00\phantom{5}\\9169\overline{)61629}\\\end{array}
Use the 3^{rd} digit 6 from dividend 61629
\begin{array}{l}\phantom{9169)}000\phantom{6}\\9169\overline{)61629}\\\end{array}
Since 616 is less than 9169, use the next digit 2 from dividend 61629 and add 0 to the quotient
\begin{array}{l}\phantom{9169)}000\phantom{7}\\9169\overline{)61629}\\\end{array}
Use the 4^{th} digit 2 from dividend 61629
\begin{array}{l}\phantom{9169)}0000\phantom{8}\\9169\overline{)61629}\\\end{array}
Since 6162 is less than 9169, use the next digit 9 from dividend 61629 and add 0 to the quotient
\begin{array}{l}\phantom{9169)}0000\phantom{9}\\9169\overline{)61629}\\\end{array}
Use the 5^{th} digit 9 from dividend 61629
\begin{array}{l}\phantom{9169)}00006\phantom{10}\\9169\overline{)61629}\\\phantom{9169)}\underline{\phantom{}55014\phantom{}}\\\phantom{9169)9}6615\\\end{array}
Find closest multiple of 9169 to 61629. We see that 6 \times 9169 = 55014 is the nearest. Now subtract 55014 from 61629 to get reminder 6615. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }6615
Since 6615 is less than 9169, stop the division. The reminder is 6615. The topmost line 00006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}