Solve for x
x=\frac{200\sqrt{9727201}}{1801}+200\approx 546.346041169
x=-\frac{200\sqrt{9727201}}{1801}+200\approx -146.346041169
Graph
Share
Copied to clipboard
60x\times 6000-\left(60x-24000\right)\times 6000=x\left(x-400\right)\left(30\times 60+1\right)
Variable x cannot be equal to any of the values 0,400 since division by zero is not defined. Multiply both sides of the equation by 60x\left(x-400\right), the least common multiple of x-400,x,60.
360000x-\left(60x-24000\right)\times 6000=x\left(x-400\right)\left(30\times 60+1\right)
Multiply 60 and 6000 to get 360000.
360000x-\left(360000x-144000000\right)=x\left(x-400\right)\left(30\times 60+1\right)
Use the distributive property to multiply 60x-24000 by 6000.
360000x-360000x+144000000=x\left(x-400\right)\left(30\times 60+1\right)
To find the opposite of 360000x-144000000, find the opposite of each term.
144000000=x\left(x-400\right)\left(30\times 60+1\right)
Combine 360000x and -360000x to get 0.
144000000=x\left(x-400\right)\left(1800+1\right)
Multiply 30 and 60 to get 1800.
144000000=x\left(x-400\right)\times 1801
Add 1800 and 1 to get 1801.
144000000=\left(x^{2}-400x\right)\times 1801
Use the distributive property to multiply x by x-400.
144000000=1801x^{2}-720400x
Use the distributive property to multiply x^{2}-400x by 1801.
1801x^{2}-720400x=144000000
Swap sides so that all variable terms are on the left hand side.
1801x^{2}-720400x-144000000=0
Subtract 144000000 from both sides.
x=\frac{-\left(-720400\right)±\sqrt{\left(-720400\right)^{2}-4\times 1801\left(-144000000\right)}}{2\times 1801}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1801 for a, -720400 for b, and -144000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-720400\right)±\sqrt{518976160000-4\times 1801\left(-144000000\right)}}{2\times 1801}
Square -720400.
x=\frac{-\left(-720400\right)±\sqrt{518976160000-7204\left(-144000000\right)}}{2\times 1801}
Multiply -4 times 1801.
x=\frac{-\left(-720400\right)±\sqrt{518976160000+1037376000000}}{2\times 1801}
Multiply -7204 times -144000000.
x=\frac{-\left(-720400\right)±\sqrt{1556352160000}}{2\times 1801}
Add 518976160000 to 1037376000000.
x=\frac{-\left(-720400\right)±400\sqrt{9727201}}{2\times 1801}
Take the square root of 1556352160000.
x=\frac{720400±400\sqrt{9727201}}{2\times 1801}
The opposite of -720400 is 720400.
x=\frac{720400±400\sqrt{9727201}}{3602}
Multiply 2 times 1801.
x=\frac{400\sqrt{9727201}+720400}{3602}
Now solve the equation x=\frac{720400±400\sqrt{9727201}}{3602} when ± is plus. Add 720400 to 400\sqrt{9727201}.
x=\frac{200\sqrt{9727201}}{1801}+200
Divide 720400+400\sqrt{9727201} by 3602.
x=\frac{720400-400\sqrt{9727201}}{3602}
Now solve the equation x=\frac{720400±400\sqrt{9727201}}{3602} when ± is minus. Subtract 400\sqrt{9727201} from 720400.
x=-\frac{200\sqrt{9727201}}{1801}+200
Divide 720400-400\sqrt{9727201} by 3602.
x=\frac{200\sqrt{9727201}}{1801}+200 x=-\frac{200\sqrt{9727201}}{1801}+200
The equation is now solved.
60x\times 6000-\left(60x-24000\right)\times 6000=x\left(x-400\right)\left(30\times 60+1\right)
Variable x cannot be equal to any of the values 0,400 since division by zero is not defined. Multiply both sides of the equation by 60x\left(x-400\right), the least common multiple of x-400,x,60.
360000x-\left(60x-24000\right)\times 6000=x\left(x-400\right)\left(30\times 60+1\right)
Multiply 60 and 6000 to get 360000.
360000x-\left(360000x-144000000\right)=x\left(x-400\right)\left(30\times 60+1\right)
Use the distributive property to multiply 60x-24000 by 6000.
360000x-360000x+144000000=x\left(x-400\right)\left(30\times 60+1\right)
To find the opposite of 360000x-144000000, find the opposite of each term.
144000000=x\left(x-400\right)\left(30\times 60+1\right)
Combine 360000x and -360000x to get 0.
144000000=x\left(x-400\right)\left(1800+1\right)
Multiply 30 and 60 to get 1800.
144000000=x\left(x-400\right)\times 1801
Add 1800 and 1 to get 1801.
144000000=\left(x^{2}-400x\right)\times 1801
Use the distributive property to multiply x by x-400.
144000000=1801x^{2}-720400x
Use the distributive property to multiply x^{2}-400x by 1801.
1801x^{2}-720400x=144000000
Swap sides so that all variable terms are on the left hand side.
\frac{1801x^{2}-720400x}{1801}=\frac{144000000}{1801}
Divide both sides by 1801.
x^{2}+\left(-\frac{720400}{1801}\right)x=\frac{144000000}{1801}
Dividing by 1801 undoes the multiplication by 1801.
x^{2}-400x=\frac{144000000}{1801}
Divide -720400 by 1801.
x^{2}-400x+\left(-200\right)^{2}=\frac{144000000}{1801}+\left(-200\right)^{2}
Divide -400, the coefficient of the x term, by 2 to get -200. Then add the square of -200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-400x+40000=\frac{144000000}{1801}+40000
Square -200.
x^{2}-400x+40000=\frac{216040000}{1801}
Add \frac{144000000}{1801} to 40000.
\left(x-200\right)^{2}=\frac{216040000}{1801}
Factor x^{2}-400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-200\right)^{2}}=\sqrt{\frac{216040000}{1801}}
Take the square root of both sides of the equation.
x-200=\frac{200\sqrt{9727201}}{1801} x-200=-\frac{200\sqrt{9727201}}{1801}
Simplify.
x=\frac{200\sqrt{9727201}}{1801}+200 x=-\frac{200\sqrt{9727201}}{1801}+200
Add 200 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}