Solve for x
x = -\frac{100}{3} = -33\frac{1}{3} \approx -33.333333333
x=40
Graph
Share
Copied to clipboard
x\times 60+x\left(x+20\right)\times 1.5=\left(x+20\right)\times 100
Variable x cannot be equal to any of the values -20,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+20\right), the least common multiple of x+20,x.
x\times 60+\left(x^{2}+20x\right)\times 1.5=\left(x+20\right)\times 100
Use the distributive property to multiply x by x+20.
x\times 60+1.5x^{2}+30x=\left(x+20\right)\times 100
Use the distributive property to multiply x^{2}+20x by 1.5.
90x+1.5x^{2}=\left(x+20\right)\times 100
Combine x\times 60 and 30x to get 90x.
90x+1.5x^{2}=100x+2000
Use the distributive property to multiply x+20 by 100.
90x+1.5x^{2}-100x=2000
Subtract 100x from both sides.
-10x+1.5x^{2}=2000
Combine 90x and -100x to get -10x.
-10x+1.5x^{2}-2000=0
Subtract 2000 from both sides.
1.5x^{2}-10x-2000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 1.5\left(-2000\right)}}{2\times 1.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.5 for a, -10 for b, and -2000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 1.5\left(-2000\right)}}{2\times 1.5}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-6\left(-2000\right)}}{2\times 1.5}
Multiply -4 times 1.5.
x=\frac{-\left(-10\right)±\sqrt{100+12000}}{2\times 1.5}
Multiply -6 times -2000.
x=\frac{-\left(-10\right)±\sqrt{12100}}{2\times 1.5}
Add 100 to 12000.
x=\frac{-\left(-10\right)±110}{2\times 1.5}
Take the square root of 12100.
x=\frac{10±110}{2\times 1.5}
The opposite of -10 is 10.
x=\frac{10±110}{3}
Multiply 2 times 1.5.
x=\frac{120}{3}
Now solve the equation x=\frac{10±110}{3} when ± is plus. Add 10 to 110.
x=40
Divide 120 by 3.
x=-\frac{100}{3}
Now solve the equation x=\frac{10±110}{3} when ± is minus. Subtract 110 from 10.
x=40 x=-\frac{100}{3}
The equation is now solved.
x\times 60+x\left(x+20\right)\times 1.5=\left(x+20\right)\times 100
Variable x cannot be equal to any of the values -20,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+20\right), the least common multiple of x+20,x.
x\times 60+\left(x^{2}+20x\right)\times 1.5=\left(x+20\right)\times 100
Use the distributive property to multiply x by x+20.
x\times 60+1.5x^{2}+30x=\left(x+20\right)\times 100
Use the distributive property to multiply x^{2}+20x by 1.5.
90x+1.5x^{2}=\left(x+20\right)\times 100
Combine x\times 60 and 30x to get 90x.
90x+1.5x^{2}=100x+2000
Use the distributive property to multiply x+20 by 100.
90x+1.5x^{2}-100x=2000
Subtract 100x from both sides.
-10x+1.5x^{2}=2000
Combine 90x and -100x to get -10x.
1.5x^{2}-10x=2000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1.5x^{2}-10x}{1.5}=\frac{2000}{1.5}
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{10}{1.5}\right)x=\frac{2000}{1.5}
Dividing by 1.5 undoes the multiplication by 1.5.
x^{2}-\frac{20}{3}x=\frac{2000}{1.5}
Divide -10 by 1.5 by multiplying -10 by the reciprocal of 1.5.
x^{2}-\frac{20}{3}x=\frac{4000}{3}
Divide 2000 by 1.5 by multiplying 2000 by the reciprocal of 1.5.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=\frac{4000}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{4000}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{12100}{9}
Add \frac{4000}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{12100}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{12100}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{110}{3} x-\frac{10}{3}=-\frac{110}{3}
Simplify.
x=40 x=-\frac{100}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}