Solve for x
x = \frac{400000 \sqrt{1785}}{21} \approx 804747.816162957
x = -\frac{400000 \sqrt{1785}}{21} \approx -804747.816162957
Graph
Share
Copied to clipboard
\frac{20000000}{3}\times 6.63\times 10^{8}\times 3\times 10^{-34}=\frac{100000000}{27}\times 6.63\times 10^{-34}\times 3\times 10^{8}+9.1\times 10^{-31}x^{2}
Multiply both sides of the equation by 2.
\frac{20000000}{3}\times 6.63\times 10^{-26}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-34}\times 3\times 10^{8}+9.1\times 10^{-31}x^{2}
To multiply powers of the same base, add their exponents. Add 8 and -34 to get -26.
\frac{20000000}{3}\times 6.63\times 10^{-26}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
44200000\times 10^{-26}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{20000000}{3} and 6.63 to get 44200000.
44200000\times \frac{1}{100000000000000000000000000}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Calculate 10 to the power of -26 and get \frac{1}{100000000000000000000000000}.
\frac{221}{500000000000000000000}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply 44200000 and \frac{1}{100000000000000000000000000} to get \frac{221}{500000000000000000000}.
\frac{663}{500000000000000000000}=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{221}{500000000000000000000} and 3 to get \frac{663}{500000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221000000}{9}\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{100000000}{27} and 6.63 to get \frac{221000000}{9}.
\frac{663}{500000000000000000000}=\frac{221000000}{9}\times \frac{1}{100000000000000000000000000}\times 3+9.1\times 10^{-31}x^{2}
Calculate 10 to the power of -26 and get \frac{1}{100000000000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{900000000000000000000}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{221000000}{9} and \frac{1}{100000000000000000000000000} to get \frac{221}{900000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{300000000000000000000}+9.1\times 10^{-31}x^{2}
Multiply \frac{221}{900000000000000000000} and 3 to get \frac{221}{300000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{300000000000000000000}+9.1\times \frac{1}{10000000000000000000000000000000}x^{2}
Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{300000000000000000000}+\frac{91}{100000000000000000000000000000000}x^{2}
Multiply 9.1 and \frac{1}{10000000000000000000000000000000} to get \frac{91}{100000000000000000000000000000000}.
\frac{221}{300000000000000000000}+\frac{91}{100000000000000000000000000000000}x^{2}=\frac{663}{500000000000000000000}
Swap sides so that all variable terms are on the left hand side.
\frac{91}{100000000000000000000000000000000}x^{2}=\frac{663}{500000000000000000000}-\frac{221}{300000000000000000000}
Subtract \frac{221}{300000000000000000000} from both sides.
\frac{91}{100000000000000000000000000000000}x^{2}=\frac{221}{375000000000000000000}
Subtract \frac{221}{300000000000000000000} from \frac{663}{500000000000000000000} to get \frac{221}{375000000000000000000}.
x^{2}=\frac{221}{375000000000000000000}\times \frac{100000000000000000000000000000000}{91}
Multiply both sides by \frac{100000000000000000000000000000000}{91}, the reciprocal of \frac{91}{100000000000000000000000000000000}.
x^{2}=\frac{13600000000000}{21}
Multiply \frac{221}{375000000000000000000} and \frac{100000000000000000000000000000000}{91} to get \frac{13600000000000}{21}.
x=\frac{400000\sqrt{1785}}{21} x=-\frac{400000\sqrt{1785}}{21}
Take the square root of both sides of the equation.
\frac{20000000}{3}\times 6.63\times 10^{8}\times 3\times 10^{-34}=\frac{100000000}{27}\times 6.63\times 10^{-34}\times 3\times 10^{8}+9.1\times 10^{-31}x^{2}
Multiply both sides of the equation by 2.
\frac{20000000}{3}\times 6.63\times 10^{-26}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-34}\times 3\times 10^{8}+9.1\times 10^{-31}x^{2}
To multiply powers of the same base, add their exponents. Add 8 and -34 to get -26.
\frac{20000000}{3}\times 6.63\times 10^{-26}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
44200000\times 10^{-26}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{20000000}{3} and 6.63 to get 44200000.
44200000\times \frac{1}{100000000000000000000000000}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Calculate 10 to the power of -26 and get \frac{1}{100000000000000000000000000}.
\frac{221}{500000000000000000000}\times 3=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply 44200000 and \frac{1}{100000000000000000000000000} to get \frac{221}{500000000000000000000}.
\frac{663}{500000000000000000000}=\frac{100000000}{27}\times 6.63\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{221}{500000000000000000000} and 3 to get \frac{663}{500000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221000000}{9}\times 10^{-26}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{100000000}{27} and 6.63 to get \frac{221000000}{9}.
\frac{663}{500000000000000000000}=\frac{221000000}{9}\times \frac{1}{100000000000000000000000000}\times 3+9.1\times 10^{-31}x^{2}
Calculate 10 to the power of -26 and get \frac{1}{100000000000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{900000000000000000000}\times 3+9.1\times 10^{-31}x^{2}
Multiply \frac{221000000}{9} and \frac{1}{100000000000000000000000000} to get \frac{221}{900000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{300000000000000000000}+9.1\times 10^{-31}x^{2}
Multiply \frac{221}{900000000000000000000} and 3 to get \frac{221}{300000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{300000000000000000000}+9.1\times \frac{1}{10000000000000000000000000000000}x^{2}
Calculate 10 to the power of -31 and get \frac{1}{10000000000000000000000000000000}.
\frac{663}{500000000000000000000}=\frac{221}{300000000000000000000}+\frac{91}{100000000000000000000000000000000}x^{2}
Multiply 9.1 and \frac{1}{10000000000000000000000000000000} to get \frac{91}{100000000000000000000000000000000}.
\frac{221}{300000000000000000000}+\frac{91}{100000000000000000000000000000000}x^{2}=\frac{663}{500000000000000000000}
Swap sides so that all variable terms are on the left hand side.
\frac{221}{300000000000000000000}+\frac{91}{100000000000000000000000000000000}x^{2}-\frac{663}{500000000000000000000}=0
Subtract \frac{663}{500000000000000000000} from both sides.
-\frac{221}{375000000000000000000}+\frac{91}{100000000000000000000000000000000}x^{2}=0
Subtract \frac{663}{500000000000000000000} from \frac{221}{300000000000000000000} to get -\frac{221}{375000000000000000000}.
\frac{91}{100000000000000000000000000000000}x^{2}-\frac{221}{375000000000000000000}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{91}{100000000000000000000000000000000}\left(-\frac{221}{375000000000000000000}\right)}}{2\times \frac{91}{100000000000000000000000000000000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{91}{100000000000000000000000000000000} for a, 0 for b, and -\frac{221}{375000000000000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{91}{100000000000000000000000000000000}\left(-\frac{221}{375000000000000000000}\right)}}{2\times \frac{91}{100000000000000000000000000000000}}
Square 0.
x=\frac{0±\sqrt{-\frac{91}{25000000000000000000000000000000}\left(-\frac{221}{375000000000000000000}\right)}}{2\times \frac{91}{100000000000000000000000000000000}}
Multiply -4 times \frac{91}{100000000000000000000000000000000}.
x=\frac{0±\sqrt{\frac{20111}{9375000000000000000000000000000000000000000000000000}}}{2\times \frac{91}{100000000000000000000000000000000}}
Multiply -\frac{91}{25000000000000000000000000000000} times -\frac{221}{375000000000000000000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{13\sqrt{1785}}{375000000000000000000000000}}{2\times \frac{91}{100000000000000000000000000000000}}
Take the square root of \frac{20111}{9375000000000000000000000000000000000000000000000000}.
x=\frac{0±\frac{13\sqrt{1785}}{375000000000000000000000000}}{\frac{91}{50000000000000000000000000000000}}
Multiply 2 times \frac{91}{100000000000000000000000000000000}.
x=\frac{400000\sqrt{1785}}{21}
Now solve the equation x=\frac{0±\frac{13\sqrt{1785}}{375000000000000000000000000}}{\frac{91}{50000000000000000000000000000000}} when ± is plus.
x=-\frac{400000\sqrt{1785}}{21}
Now solve the equation x=\frac{0±\frac{13\sqrt{1785}}{375000000000000000000000000}}{\frac{91}{50000000000000000000000000000000}} when ± is minus.
x=\frac{400000\sqrt{1785}}{21} x=-\frac{400000\sqrt{1785}}{21}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}