Evaluate
0.000000000000000000495
Factor
\frac{11 \cdot 3 ^ {2}}{2 ^ {21} \cdot 5 ^ {20}} = 4.95 \times 10^{-19}
Share
Copied to clipboard
\frac{6.6\times 10^{-26}\times 3}{400\times 10^{-9}}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
\frac{3\times 6.6}{400\times 10^{17}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{19.8}{400\times 10^{17}}
Multiply 3 and 6.6 to get 19.8.
\frac{19.8}{400\times 100000000000000000}
Calculate 10 to the power of 17 and get 100000000000000000.
\frac{19.8}{40000000000000000000}
Multiply 400 and 100000000000000000 to get 40000000000000000000.
\frac{198}{400000000000000000000}
Expand \frac{19.8}{40000000000000000000} by multiplying both numerator and the denominator by 10.
\frac{99}{200000000000000000000}
Reduce the fraction \frac{198}{400000000000000000000} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}