Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
\left(x-6\right)\left(6-x\right)=-\left(4+x\right)x
Variable x cannot be equal to any of the values -4,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x+4\right), the least common multiple of x+4,6-x.
12x-x^{2}-36=-\left(4+x\right)x
Use the distributive property to multiply x-6 by 6-x and combine like terms.
12x-x^{2}-36=\left(-4-x\right)x
Use the distributive property to multiply -1 by 4+x.
12x-x^{2}-36=-4x-x^{2}
Use the distributive property to multiply -4-x by x.
12x-x^{2}-36+4x=-x^{2}
Add 4x to both sides.
16x-x^{2}-36=-x^{2}
Combine 12x and 4x to get 16x.
16x-x^{2}-36+x^{2}=0
Add x^{2} to both sides.
16x-36=0
Combine -x^{2} and x^{2} to get 0.
16x=36
Add 36 to both sides. Anything plus zero gives itself.
x=\frac{36}{16}
Divide both sides by 16.
x=\frac{9}{4}
Reduce the fraction \frac{36}{16} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}