Solve for C
C=-\frac{3M}{2}+\frac{6}{N}
N\neq 0
Solve for M
M=-\frac{2C}{3}+\frac{4}{N}
N\neq 0
Share
Copied to clipboard
2\left(6-NC\right)=3NM
Multiply both sides of the equation by 12, the least common multiple of 6,4.
12-2NC=3NM
Use the distributive property to multiply 2 by 6-NC.
-2NC=3NM-12
Subtract 12 from both sides.
\left(-2N\right)C=3MN-12
The equation is in standard form.
\frac{\left(-2N\right)C}{-2N}=\frac{3MN-12}{-2N}
Divide both sides by -2N.
C=\frac{3MN-12}{-2N}
Dividing by -2N undoes the multiplication by -2N.
C=-\frac{3M}{2}+\frac{6}{N}
Divide 3NM-12 by -2N.
2\left(6-NC\right)=3NM
Multiply both sides of the equation by 12, the least common multiple of 6,4.
12-2NC=3NM
Use the distributive property to multiply 2 by 6-NC.
3NM=12-2NC
Swap sides so that all variable terms are on the left hand side.
3NM=12-2CN
The equation is in standard form.
\frac{3NM}{3N}=\frac{12-2CN}{3N}
Divide both sides by 3N.
M=\frac{12-2CN}{3N}
Dividing by 3N undoes the multiplication by 3N.
M=-\frac{2C}{3}+\frac{4}{N}
Divide 12-2NC by 3N.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}