Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
6-2x-3\left(5x-8\right)=3x
Multiply both sides of the equation by 9, the least common multiple of 9,3.
6-2x-15x+24=3x
Use the distributive property to multiply -3 by 5x-8.
6-17x+24=3x
Combine -2x and -15x to get -17x.
30-17x=3x
Add 6 and 24 to get 30.
30-17x-3x=0
Subtract 3x from both sides.
30-20x=0
Combine -17x and -3x to get -20x.
-20x=-30
Subtract 30 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-30}{-20}
Divide both sides by -20.
x=\frac{3}{2}
Reduce the fraction \frac{-30}{-20} to lowest terms by extracting and canceling out -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}