Solve for x
x = -\frac{105}{4} = -26\frac{1}{4} = -26.25
Graph
Share
Copied to clipboard
\left(x+20\right)\left(6+x\right)=\left(x+15\right)\left(15+x\right)
Variable x cannot be equal to any of the values -20,-15 since division by zero is not defined. Multiply both sides of the equation by \left(x+15\right)\left(x+20\right), the least common multiple of 15+x,20+x.
\left(x+20\right)\left(6+x\right)=\left(x+15\right)^{2}
Multiply x+15 and 15+x to get \left(x+15\right)^{2}.
26x+x^{2}+120=\left(x+15\right)^{2}
Use the distributive property to multiply x+20 by 6+x and combine like terms.
26x+x^{2}+120=x^{2}+30x+225
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+15\right)^{2}.
26x+x^{2}+120-x^{2}=30x+225
Subtract x^{2} from both sides.
26x+120=30x+225
Combine x^{2} and -x^{2} to get 0.
26x+120-30x=225
Subtract 30x from both sides.
-4x+120=225
Combine 26x and -30x to get -4x.
-4x=225-120
Subtract 120 from both sides.
-4x=105
Subtract 120 from 225 to get 105.
x=\frac{105}{-4}
Divide both sides by -4.
x=-\frac{105}{4}
Fraction \frac{105}{-4} can be rewritten as -\frac{105}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}