Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\times \frac{\sqrt{3+1}}{\sqrt{3}+1}
Rationalize the denominator of \frac{6\sqrt{3}}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\times \frac{\sqrt{3+1}}{\sqrt{3}+1}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{3-1}\times \frac{\sqrt{3+1}}{\sqrt{3}+1}
Square \sqrt{3}. Square 1.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\times \frac{\sqrt{3+1}}{\sqrt{3}+1}
Subtract 1 from 3 to get 2.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\times \frac{\sqrt{4}}{\sqrt{3}+1}
Add 3 and 1 to get 4.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\times \frac{2}{\sqrt{3}+1}
Calculate the square root of 4 and get 2.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\times \frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\times \frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\times \frac{2\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\times \frac{2\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\left(\sqrt{3}-1\right)
Cancel out 2 and 2.
\frac{6\sqrt{3}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{2}
Express \frac{6\sqrt{3}\left(\sqrt{3}+1\right)}{2}\left(\sqrt{3}-1\right) as a single fraction.
\frac{\left(6\left(\sqrt{3}\right)^{2}+6\sqrt{3}\right)\left(\sqrt{3}-1\right)}{2}
Use the distributive property to multiply 6\sqrt{3} by \sqrt{3}+1.
\frac{\left(6\times 3+6\sqrt{3}\right)\left(\sqrt{3}-1\right)}{2}
The square of \sqrt{3} is 3.
\frac{\left(18+6\sqrt{3}\right)\left(\sqrt{3}-1\right)}{2}
Multiply 6 and 3 to get 18.
\frac{18\sqrt{3}-18+6\left(\sqrt{3}\right)^{2}-6\sqrt{3}}{2}
Apply the distributive property by multiplying each term of 18+6\sqrt{3} by each term of \sqrt{3}-1.
\frac{18\sqrt{3}-18+6\times 3-6\sqrt{3}}{2}
The square of \sqrt{3} is 3.
\frac{18\sqrt{3}-18+18-6\sqrt{3}}{2}
Multiply 6 and 3 to get 18.
\frac{18\sqrt{3}-6\sqrt{3}}{2}
Add -18 and 18 to get 0.
\frac{12\sqrt{3}}{2}
Combine 18\sqrt{3} and -6\sqrt{3} to get 12\sqrt{3}.
6\sqrt{3}
Divide 12\sqrt{3} by 2 to get 6\sqrt{3}.