Solve for k
k=\frac{1}{3}\approx 0.333333333
k=-\frac{1}{3}\approx -0.333333333
Solve for k (complex solution)
k=i
k=-i
k=-\frac{1}{3}\approx -0.333333333
k=\frac{1}{3}\approx 0.333333333
Share
Copied to clipboard
6\sqrt{k^{2}+k^{4}}=\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}
Multiply both sides of the equation by 3k^{2}+1.
6\sqrt{k^{2}+k^{4}}-\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}=0
Subtract \frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}} from both sides.
6\sqrt{k^{2}+k^{4}}=\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}
Subtract -\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}} from both sides of the equation.
\left(6\sqrt{k^{2}+k^{4}}\right)^{2}=\left(\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{k^{2}+k^{4}}\right)^{2}=\left(\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}\right)^{2}
Expand \left(6\sqrt{k^{2}+k^{4}}\right)^{2}.
36\left(\sqrt{k^{2}+k^{4}}\right)^{2}=\left(\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(k^{2}+k^{4}\right)=\left(\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}\right)^{2}
Calculate \sqrt{k^{2}+k^{4}} to the power of 2 and get k^{2}+k^{4}.
36k^{2}+36k^{4}=\left(\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}\right)^{2}
Use the distributive property to multiply 36 by k^{2}+k^{4}.
36k^{2}+36k^{4}=\left(\frac{1}{2}\right)^{2}\left(\sqrt{1+k^{2}}\right)^{2}\left(\sqrt{48-288k^{2}}\right)^{2}
Expand \left(\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}\right)^{2}.
36k^{2}+36k^{4}=\frac{1}{4}\left(\sqrt{1+k^{2}}\right)^{2}\left(\sqrt{48-288k^{2}}\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
36k^{2}+36k^{4}=\frac{1}{4}\left(1+k^{2}\right)\left(\sqrt{48-288k^{2}}\right)^{2}
Calculate \sqrt{1+k^{2}} to the power of 2 and get 1+k^{2}.
36k^{2}+36k^{4}=\frac{1}{4}\left(1+k^{2}\right)\left(48-288k^{2}\right)
Calculate \sqrt{48-288k^{2}} to the power of 2 and get 48-288k^{2}.
36k^{2}+36k^{4}=\left(\frac{1}{4}+\frac{1}{4}k^{2}\right)\left(48-288k^{2}\right)
Use the distributive property to multiply \frac{1}{4} by 1+k^{2}.
36k^{2}+36k^{4}=12-60k^{2}-72k^{4}
Use the distributive property to multiply \frac{1}{4}+\frac{1}{4}k^{2} by 48-288k^{2} and combine like terms.
36k^{2}+36k^{4}-12=-60k^{2}-72k^{4}
Subtract 12 from both sides.
36k^{2}+36k^{4}-12+60k^{2}=-72k^{4}
Add 60k^{2} to both sides.
96k^{2}+36k^{4}-12=-72k^{4}
Combine 36k^{2} and 60k^{2} to get 96k^{2}.
96k^{2}+36k^{4}-12+72k^{4}=0
Add 72k^{4} to both sides.
96k^{2}+108k^{4}-12=0
Combine 36k^{4} and 72k^{4} to get 108k^{4}.
108t^{2}+96t-12=0
Substitute t for k^{2}.
t=\frac{-96±\sqrt{96^{2}-4\times 108\left(-12\right)}}{2\times 108}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 108 for a, 96 for b, and -12 for c in the quadratic formula.
t=\frac{-96±120}{216}
Do the calculations.
t=\frac{1}{9} t=-1
Solve the equation t=\frac{-96±120}{216} when ± is plus and when ± is minus.
k=\frac{1}{3} k=-\frac{1}{3}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
\frac{6\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{4}}}{3\times \left(\frac{1}{3}\right)^{2}+1}=\frac{\frac{1}{2}\sqrt{1+\left(\frac{1}{3}\right)^{2}}\sqrt{48-288\times \left(\frac{1}{3}\right)^{2}}}{3\times \left(\frac{1}{3}\right)^{2}+1}
Substitute \frac{1}{3} for k in the equation \frac{6\sqrt{k^{2}+k^{4}}}{3k^{2}+1}=\frac{\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}}{3k^{2}+1}.
\frac{1}{2}\times 10^{\frac{1}{2}}=\frac{1}{2}\times 10^{\frac{1}{2}}
Simplify. The value k=\frac{1}{3} satisfies the equation.
\frac{6\sqrt{\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{4}}}{3\left(-\frac{1}{3}\right)^{2}+1}=\frac{\frac{1}{2}\sqrt{1+\left(-\frac{1}{3}\right)^{2}}\sqrt{48-288\left(-\frac{1}{3}\right)^{2}}}{3\left(-\frac{1}{3}\right)^{2}+1}
Substitute -\frac{1}{3} for k in the equation \frac{6\sqrt{k^{2}+k^{4}}}{3k^{2}+1}=\frac{\frac{1}{2}\sqrt{1+k^{2}}\sqrt{48-288k^{2}}}{3k^{2}+1}.
\frac{1}{2}\times 10^{\frac{1}{2}}=\frac{1}{2}\times 10^{\frac{1}{2}}
Simplify. The value k=-\frac{1}{3} satisfies the equation.
k=\frac{1}{3} k=-\frac{1}{3}
List all solutions of 6\sqrt{k^{4}+k^{2}}=\frac{\sqrt{48-288k^{2}}\sqrt{k^{2}+1}}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}