Evaluate
\frac{851}{154}\approx 5.525974026
Factor
\frac{23 \cdot 37}{2 \cdot 7 \cdot 11} = 5\frac{81}{154} = 5.525974025974026
Share
Copied to clipboard
\frac{\frac{66+3}{11}}{\frac{1\times 7+5}{7}\times 1.48}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Multiply 6 and 11 to get 66.
\frac{\frac{69}{11}}{\frac{1\times 7+5}{7}\times 1.48}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Add 66 and 3 to get 69.
\frac{\frac{69}{11}}{\frac{7+5}{7}\times 1.48}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Multiply 1 and 7 to get 7.
\frac{\frac{69}{11}}{\frac{12}{7}\times 1.48}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Add 7 and 5 to get 12.
\frac{\frac{69}{11}}{\frac{12}{7}\times \frac{37}{25}}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Convert decimal number 1.48 to fraction \frac{148}{100}. Reduce the fraction \frac{148}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{69}{11}}{\frac{12\times 37}{7\times 25}}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Multiply \frac{12}{7} times \frac{37}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{69}{11}}{\frac{444}{175}}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Do the multiplications in the fraction \frac{12\times 37}{7\times 25}.
\frac{69}{11}\times \frac{175}{444}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Divide \frac{69}{11} by \frac{444}{175} by multiplying \frac{69}{11} by the reciprocal of \frac{444}{175}.
\frac{69\times 175}{11\times 444}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Multiply \frac{69}{11} times \frac{175}{444} by multiplying numerator times numerator and denominator times denominator.
\frac{12075}{4884}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Do the multiplications in the fraction \frac{69\times 175}{11\times 444}.
\frac{4025}{1628}\times 2.96-\frac{2\times 11+1}{11}\times \frac{6}{7}
Reduce the fraction \frac{12075}{4884} to lowest terms by extracting and canceling out 3.
\frac{4025}{1628}\times \frac{74}{25}-\frac{2\times 11+1}{11}\times \frac{6}{7}
Convert decimal number 2.96 to fraction \frac{296}{100}. Reduce the fraction \frac{296}{100} to lowest terms by extracting and canceling out 4.
\frac{4025\times 74}{1628\times 25}-\frac{2\times 11+1}{11}\times \frac{6}{7}
Multiply \frac{4025}{1628} times \frac{74}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{297850}{40700}-\frac{2\times 11+1}{11}\times \frac{6}{7}
Do the multiplications in the fraction \frac{4025\times 74}{1628\times 25}.
\frac{161}{22}-\frac{2\times 11+1}{11}\times \frac{6}{7}
Reduce the fraction \frac{297850}{40700} to lowest terms by extracting and canceling out 1850.
\frac{161}{22}-\frac{22+1}{11}\times \frac{6}{7}
Multiply 2 and 11 to get 22.
\frac{161}{22}-\frac{23}{11}\times \frac{6}{7}
Add 22 and 1 to get 23.
\frac{161}{22}-\frac{23\times 6}{11\times 7}
Multiply \frac{23}{11} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{161}{22}-\frac{138}{77}
Do the multiplications in the fraction \frac{23\times 6}{11\times 7}.
\frac{1127}{154}-\frac{276}{154}
Least common multiple of 22 and 77 is 154. Convert \frac{161}{22} and \frac{138}{77} to fractions with denominator 154.
\frac{1127-276}{154}
Since \frac{1127}{154} and \frac{276}{154} have the same denominator, subtract them by subtracting their numerators.
\frac{851}{154}
Subtract 276 from 1127 to get 851.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}