Solve for x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Share
Copied to clipboard
7\times \frac{6\times 3+2}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7x, the least common multiple of x,7.
7\times \frac{18+2}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Multiply 6 and 3 to get 18.
7\times \frac{20}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Add 18 and 2 to get 20.
\frac{7\times 20}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Express 7\times \frac{20}{3} as a single fraction.
\frac{140}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Multiply 7 and 20 to get 140.
\frac{140}{3}-56x=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Multiply 7 and -8 to get -56.
\frac{140}{3}-56x=-\frac{21}{5}\times \frac{5}{7}\times 7x+7x\left(-3\right)
Convert decimal number -4.2 to fraction -\frac{42}{10}. Reduce the fraction -\frac{42}{10} to lowest terms by extracting and canceling out 2.
\frac{140}{3}-56x=\frac{-21\times 5}{5\times 7}\times 7x+7x\left(-3\right)
Multiply -\frac{21}{5} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{140}{3}-56x=\frac{-21}{7}\times 7x+7x\left(-3\right)
Cancel out 5 in both numerator and denominator.
\frac{140}{3}-56x=-3\times 7x+7x\left(-3\right)
Divide -21 by 7 to get -3.
\frac{140}{3}-56x=-21x+7x\left(-3\right)
Multiply -3 and 7 to get -21.
\frac{140}{3}-56x=-21x-21x
Multiply 7 and -3 to get -21.
\frac{140}{3}-56x=-42x
Combine -21x and -21x to get -42x.
\frac{140}{3}-56x+42x=0
Add 42x to both sides.
\frac{140}{3}-14x=0
Combine -56x and 42x to get -14x.
-14x=-\frac{140}{3}
Subtract \frac{140}{3} from both sides. Anything subtracted from zero gives its negation.
x=\frac{-\frac{140}{3}}{-14}
Divide both sides by -14.
x=\frac{-140}{3\left(-14\right)}
Express \frac{-\frac{140}{3}}{-14} as a single fraction.
x=\frac{-140}{-42}
Multiply 3 and -14 to get -42.
x=\frac{10}{3}
Reduce the fraction \frac{-140}{-42} to lowest terms by extracting and canceling out -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}