Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6=4xx+x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
6=4x^{2}+x
Multiply x and x to get x^{2}.
4x^{2}+x=6
Swap sides so that all variable terms are on the left hand side.
4x^{2}+x-6=0
Subtract 6 from both sides.
x=\frac{-1±\sqrt{1^{2}-4\times 4\left(-6\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 1 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 4\left(-6\right)}}{2\times 4}
Square 1.
x=\frac{-1±\sqrt{1-16\left(-6\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-1±\sqrt{1+96}}{2\times 4}
Multiply -16 times -6.
x=\frac{-1±\sqrt{97}}{2\times 4}
Add 1 to 96.
x=\frac{-1±\sqrt{97}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{97}-1}{8}
Now solve the equation x=\frac{-1±\sqrt{97}}{8} when ± is plus. Add -1 to \sqrt{97}.
x=\frac{-\sqrt{97}-1}{8}
Now solve the equation x=\frac{-1±\sqrt{97}}{8} when ± is minus. Subtract \sqrt{97} from -1.
x=\frac{\sqrt{97}-1}{8} x=\frac{-\sqrt{97}-1}{8}
The equation is now solved.
6=4xx+x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
6=4x^{2}+x
Multiply x and x to get x^{2}.
4x^{2}+x=6
Swap sides so that all variable terms are on the left hand side.
\frac{4x^{2}+x}{4}=\frac{6}{4}
Divide both sides by 4.
x^{2}+\frac{1}{4}x=\frac{6}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{4}x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{3}{2}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{3}{2}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{97}{64}
Add \frac{3}{2} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=\frac{97}{64}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{97}{64}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{97}}{8} x+\frac{1}{8}=-\frac{\sqrt{97}}{8}
Simplify.
x=\frac{\sqrt{97}-1}{8} x=\frac{-\sqrt{97}-1}{8}
Subtract \frac{1}{8} from both sides of the equation.