Solve for x
x=-3
x=7
Graph
Share
Copied to clipboard
3\times 6=x\left(x-4\right)-3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of x,3.
18=x\left(x-4\right)-3
Multiply 3 and 6 to get 18.
18=x^{2}-4x-3
Use the distributive property to multiply x by x-4.
x^{2}-4x-3=18
Swap sides so that all variable terms are on the left hand side.
x^{2}-4x-3-18=0
Subtract 18 from both sides.
x^{2}-4x-21=0
Subtract 18 from -3 to get -21.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-21\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-21\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+84}}{2}
Multiply -4 times -21.
x=\frac{-\left(-4\right)±\sqrt{100}}{2}
Add 16 to 84.
x=\frac{-\left(-4\right)±10}{2}
Take the square root of 100.
x=\frac{4±10}{2}
The opposite of -4 is 4.
x=\frac{14}{2}
Now solve the equation x=\frac{4±10}{2} when ± is plus. Add 4 to 10.
x=7
Divide 14 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{4±10}{2} when ± is minus. Subtract 10 from 4.
x=-3
Divide -6 by 2.
x=7 x=-3
The equation is now solved.
3\times 6=x\left(x-4\right)-3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of x,3.
18=x\left(x-4\right)-3
Multiply 3 and 6 to get 18.
18=x^{2}-4x-3
Use the distributive property to multiply x by x-4.
x^{2}-4x-3=18
Swap sides so that all variable terms are on the left hand side.
x^{2}-4x=18+3
Add 3 to both sides.
x^{2}-4x=21
Add 18 and 3 to get 21.
x^{2}-4x+\left(-2\right)^{2}=21+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=21+4
Square -2.
x^{2}-4x+4=25
Add 21 to 4.
\left(x-2\right)^{2}=25
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-2=5 x-2=-5
Simplify.
x=7 x=-3
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}