\frac{ 6 }{ 7 } + \frac{ 1 }{ 42 } = \frac{ }{ }
Verify
false
Share
Copied to clipboard
\frac{6}{7}+\frac{1}{42}=1
Divide 1 by 1 to get 1.
\frac{36}{42}+\frac{1}{42}=1
Least common multiple of 7 and 42 is 42. Convert \frac{6}{7} and \frac{1}{42} to fractions with denominator 42.
\frac{36+1}{42}=1
Since \frac{36}{42} and \frac{1}{42} have the same denominator, add them by adding their numerators.
\frac{37}{42}=1
Add 36 and 1 to get 37.
\frac{37}{42}=\frac{42}{42}
Convert 1 to fraction \frac{42}{42}.
\text{false}
Compare \frac{37}{42} and \frac{42}{42}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}