Solve for x
x\leq \frac{882}{1079}
Graph
Share
Copied to clipboard
12\left(5x-\left(3x-2\right)\right)-15\left(-25\left(-2\right)\times \frac{x}{3}+5x\right)\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Multiply both sides of the equation by 300, the least common multiple of 25,20,10,15. Since 300 is positive, the inequality direction remains the same.
12\left(5x-3x-\left(-2\right)\right)-15\left(-25\left(-2\right)\times \frac{x}{3}+5x\right)\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
To find the opposite of 3x-2, find the opposite of each term.
12\left(5x-3x+2\right)-15\left(-25\left(-2\right)\times \frac{x}{3}+5x\right)\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
The opposite of -2 is 2.
12\left(2x+2\right)-15\left(-25\left(-2\right)\times \frac{x}{3}+5x\right)\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Combine 5x and -3x to get 2x.
24x+24-15\left(-25\left(-2\right)\times \frac{x}{3}+5x\right)\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Use the distributive property to multiply 12 by 2x+2.
24x+24-15\left(50\times \frac{x}{3}+5x\right)\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Multiply -25 and -2 to get 50.
24x+24-15\left(\frac{50x}{3}+5x\right)\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Express 50\times \frac{x}{3} as a single fraction.
24x+24-15\times \frac{50x}{3}-75x\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Use the distributive property to multiply -15 by \frac{50x}{3}+5x.
24x+24-5\times 50x-75x\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Cancel out 3, the greatest common factor in 15 and 3.
24x+24-250x-75x\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Multiply -5 and 50 to get -250.
24x+24-325x\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Combine -250x and -75x to get -325x.
-301x+24\leq -30\left(2x-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Combine 24x and -325x to get -301x.
-301x+24\leq -60x-30\left(-\frac{1}{5}\right)-20\times 3\left(5\left(5x-3\right)-3x\right)
Use the distributive property to multiply -30 by 2x-\frac{1}{5}.
-301x+24\leq -60x+\frac{-30\left(-1\right)}{5}-20\times 3\left(5\left(5x-3\right)-3x\right)
Express -30\left(-\frac{1}{5}\right) as a single fraction.
-301x+24\leq -60x+\frac{30}{5}-20\times 3\left(5\left(5x-3\right)-3x\right)
Multiply -30 and -1 to get 30.
-301x+24\leq -60x+6-20\times 3\left(5\left(5x-3\right)-3x\right)
Divide 30 by 5 to get 6.
-301x+24\leq -60x+6-60\left(5\left(5x-3\right)-3x\right)
Multiply -20 and 3 to get -60.
-301x+24\leq -60x+6-60\left(25x-15-3x\right)
Use the distributive property to multiply 5 by 5x-3.
-301x+24\leq -60x+6-60\left(22x-15\right)
Combine 25x and -3x to get 22x.
-301x+24\leq -60x+6-1320x+900
Use the distributive property to multiply -60 by 22x-15.
-301x+24\leq -1380x+6+900
Combine -60x and -1320x to get -1380x.
-301x+24\leq -1380x+906
Add 6 and 900 to get 906.
-301x+24+1380x\leq 906
Add 1380x to both sides.
1079x+24\leq 906
Combine -301x and 1380x to get 1079x.
1079x\leq 906-24
Subtract 24 from both sides.
1079x\leq 882
Subtract 24 from 906 to get 882.
x\leq \frac{882}{1079}
Divide both sides by 1079. Since 1079 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}