Evaluate
\frac{x\left(-\sqrt{3}x+5\right)}{x+\sqrt{3}}
Factor
\frac{x\left(-\sqrt{3}x+5\right)}{x+\sqrt{3}}
Graph
Share
Copied to clipboard
\frac{\left(5x-\sqrt{3}x^{2}\right)\left(\sqrt{3}-x\right)}{\left(\sqrt{3}+x\right)\left(\sqrt{3}-x\right)}
Rationalize the denominator of \frac{5x-\sqrt{3}x^{2}}{\sqrt{3}+x} by multiplying numerator and denominator by \sqrt{3}-x.
\frac{\left(5x-\sqrt{3}x^{2}\right)\left(\sqrt{3}-x\right)}{\left(\sqrt{3}\right)^{2}-x^{2}}
Consider \left(\sqrt{3}+x\right)\left(\sqrt{3}-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5x-\sqrt{3}x^{2}\right)\left(\sqrt{3}-x\right)}{3-x^{2}}
The square of \sqrt{3} is 3.
\frac{\left(5x-\sqrt{3}x^{2}\right)\sqrt{3}-\left(5x-\sqrt{3}x^{2}\right)x}{3-x^{2}}
Use the distributive property to multiply 5x-\sqrt{3}x^{2} by \sqrt{3}-x.
\frac{5x\sqrt{3}-x^{2}\left(\sqrt{3}\right)^{2}-\left(5x-\sqrt{3}x^{2}\right)x}{3-x^{2}}
Use the distributive property to multiply 5x-\sqrt{3}x^{2} by \sqrt{3}.
\frac{5x\sqrt{3}-x^{2}\times 3-\left(5x-\sqrt{3}x^{2}\right)x}{3-x^{2}}
The square of \sqrt{3} is 3.
\frac{5x\sqrt{3}-3x^{2}-\left(5x-\sqrt{3}x^{2}\right)x}{3-x^{2}}
Multiply -1 and 3 to get -3.
\frac{5x\sqrt{3}-3x^{2}+\left(-5x+\sqrt{3}x^{2}\right)x}{3-x^{2}}
Use the distributive property to multiply -1 by 5x-\sqrt{3}x^{2}.
\frac{5x\sqrt{3}-3x^{2}-5x^{2}+\sqrt{3}x^{3}}{3-x^{2}}
Use the distributive property to multiply -5x+\sqrt{3}x^{2} by x.
\frac{5x\sqrt{3}-8x^{2}+\sqrt{3}x^{3}}{3-x^{2}}
Combine -3x^{2} and -5x^{2} to get -8x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}