Solve for x
x\in \left(-\infty,0\right)\cup \left(\frac{3}{8},\infty\right)
Graph
Share
Copied to clipboard
\frac{5x}{x}-\frac{2x}{x}>\frac{3}{x}-5
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{5x-2x}{x}>\frac{3}{x}-5
Since \frac{5x}{x} and \frac{2x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{3x}{x}>\frac{3}{x}-5
Combine like terms in 5x-2x.
\frac{3x}{x}>\frac{3}{x}-\frac{5x}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{x}{x}.
\frac{3x}{x}>\frac{3-5x}{x}
Since \frac{3}{x} and \frac{5x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{3x}{x}-\frac{3-5x}{x}>0
Subtract \frac{3-5x}{x} from both sides.
\frac{3x-\left(3-5x\right)}{x}>0
Since \frac{3x}{x} and \frac{3-5x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-3+5x}{x}>0
Do the multiplications in 3x-\left(3-5x\right).
\frac{8x-3}{x}>0
Combine like terms in 3x-3+5x.
8x-3<0 x<0
For the quotient to be positive, 8x-3 and x have to be both negative or both positive. Consider the case when 8x-3 and x are both negative.
x<0
The solution satisfying both inequalities is x<0.
x>0 8x-3>0
Consider the case when 8x-3 and x are both positive.
x>\frac{3}{8}
The solution satisfying both inequalities is x>\frac{3}{8}.
x<0\text{; }x>\frac{3}{8}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}