Solve for k
k=\frac{5t}{3}-\frac{8x}{3}+1
Solve for t
t=\frac{8x+3k-3}{5}
Graph
Share
Copied to clipboard
\frac{5}{8}t-\frac{3}{8}k+\frac{3}{8}=x
Divide each term of 5t-3k+3 by 8 to get \frac{5}{8}t-\frac{3}{8}k+\frac{3}{8}.
-\frac{3}{8}k+\frac{3}{8}=x-\frac{5}{8}t
Subtract \frac{5}{8}t from both sides.
-\frac{3}{8}k=x-\frac{5}{8}t-\frac{3}{8}
Subtract \frac{3}{8} from both sides.
-\frac{3}{8}k=-\frac{5t}{8}+x-\frac{3}{8}
The equation is in standard form.
\frac{-\frac{3}{8}k}{-\frac{3}{8}}=\frac{-\frac{5t}{8}+x-\frac{3}{8}}{-\frac{3}{8}}
Divide both sides of the equation by -\frac{3}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
k=\frac{-\frac{5t}{8}+x-\frac{3}{8}}{-\frac{3}{8}}
Dividing by -\frac{3}{8} undoes the multiplication by -\frac{3}{8}.
k=\frac{5t}{3}-\frac{8x}{3}+1
Divide x-\frac{5t}{8}-\frac{3}{8} by -\frac{3}{8} by multiplying x-\frac{5t}{8}-\frac{3}{8} by the reciprocal of -\frac{3}{8}.
\frac{5}{8}t-\frac{3}{8}k+\frac{3}{8}=x
Divide each term of 5t-3k+3 by 8 to get \frac{5}{8}t-\frac{3}{8}k+\frac{3}{8}.
\frac{5}{8}t+\frac{3}{8}=x+\frac{3}{8}k
Add \frac{3}{8}k to both sides.
\frac{5}{8}t=x+\frac{3}{8}k-\frac{3}{8}
Subtract \frac{3}{8} from both sides.
\frac{5}{8}t=\frac{3k}{8}+x-\frac{3}{8}
The equation is in standard form.
\frac{\frac{5}{8}t}{\frac{5}{8}}=\frac{\frac{3k}{8}+x-\frac{3}{8}}{\frac{5}{8}}
Divide both sides of the equation by \frac{5}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
t=\frac{\frac{3k}{8}+x-\frac{3}{8}}{\frac{5}{8}}
Dividing by \frac{5}{8} undoes the multiplication by \frac{5}{8}.
t=\frac{8x+3k-3}{5}
Divide x+\frac{3k}{8}-\frac{3}{8} by \frac{5}{8} by multiplying x+\frac{3k}{8}-\frac{3}{8} by the reciprocal of \frac{5}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}