Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+6a\right)}
Multiply \frac{a+b}{a+3} times \frac{35}{a^{2}+6a} by multiplying numerator times numerator and denominator times denominator.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Factor \left(a+3\right)\left(a^{2}+6a\right).
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and a\left(a+3\right)\left(a+6\right) is a\left(a+3\right)\left(a+6\right). Multiply \frac{5a}{a+3} times \frac{a\left(a+6\right)}{a\left(a+6\right)}.
\frac{5aa\left(a+6\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Since \frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)} and \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)} have the same denominator, add them by adding their numerators.
\frac{5a^{3}+30a^{2}+35a+35b}{a\left(a+3\right)\left(a+6\right)}
Do the multiplications in 5aa\left(a+6\right)+\left(a+b\right)\times 35.
\frac{5a^{3}+30a^{2}+35a+35b}{a^{3}+9a^{2}+18a}
Expand a\left(a+3\right)\left(a+6\right).
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+6a\right)}
Multiply \frac{a+b}{a+3} times \frac{35}{a^{2}+6a} by multiplying numerator times numerator and denominator times denominator.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Factor \left(a+3\right)\left(a^{2}+6a\right).
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and a\left(a+3\right)\left(a+6\right) is a\left(a+3\right)\left(a+6\right). Multiply \frac{5a}{a+3} times \frac{a\left(a+6\right)}{a\left(a+6\right)}.
\frac{5aa\left(a+6\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Since \frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)} and \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)} have the same denominator, add them by adding their numerators.
\frac{5a^{3}+30a^{2}+35a+35b}{a\left(a+3\right)\left(a+6\right)}
Do the multiplications in 5aa\left(a+6\right)+\left(a+b\right)\times 35.
\frac{5a^{3}+30a^{2}+35a+35b}{a^{3}+9a^{2}+18a}
Expand a\left(a+3\right)\left(a+6\right).