Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-3\right)\times 594-x\times 648=5x\left(x-3\right)
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x,x-3.
594x-1782-x\times 648=5x\left(x-3\right)
Use the distributive property to multiply x-3 by 594.
594x-1782-x\times 648=5x^{2}-15x
Use the distributive property to multiply 5x by x-3.
594x-1782-x\times 648-5x^{2}=-15x
Subtract 5x^{2} from both sides.
594x-1782-x\times 648-5x^{2}+15x=0
Add 15x to both sides.
609x-1782-x\times 648-5x^{2}=0
Combine 594x and 15x to get 609x.
609x-1782-648x-5x^{2}=0
Multiply -1 and 648 to get -648.
-39x-1782-5x^{2}=0
Combine 609x and -648x to get -39x.
-5x^{2}-39x-1782=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\left(-5\right)\left(-1782\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -39 for b, and -1782 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-39\right)±\sqrt{1521-4\left(-5\right)\left(-1782\right)}}{2\left(-5\right)}
Square -39.
x=\frac{-\left(-39\right)±\sqrt{1521+20\left(-1782\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-39\right)±\sqrt{1521-35640}}{2\left(-5\right)}
Multiply 20 times -1782.
x=\frac{-\left(-39\right)±\sqrt{-34119}}{2\left(-5\right)}
Add 1521 to -35640.
x=\frac{-\left(-39\right)±3\sqrt{3791}i}{2\left(-5\right)}
Take the square root of -34119.
x=\frac{39±3\sqrt{3791}i}{2\left(-5\right)}
The opposite of -39 is 39.
x=\frac{39±3\sqrt{3791}i}{-10}
Multiply 2 times -5.
x=\frac{39+3\sqrt{3791}i}{-10}
Now solve the equation x=\frac{39±3\sqrt{3791}i}{-10} when ± is plus. Add 39 to 3i\sqrt{3791}.
x=\frac{-3\sqrt{3791}i-39}{10}
Divide 39+3i\sqrt{3791} by -10.
x=\frac{-3\sqrt{3791}i+39}{-10}
Now solve the equation x=\frac{39±3\sqrt{3791}i}{-10} when ± is minus. Subtract 3i\sqrt{3791} from 39.
x=\frac{-39+3\sqrt{3791}i}{10}
Divide 39-3i\sqrt{3791} by -10.
x=\frac{-3\sqrt{3791}i-39}{10} x=\frac{-39+3\sqrt{3791}i}{10}
The equation is now solved.
\left(x-3\right)\times 594-x\times 648=5x\left(x-3\right)
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x,x-3.
594x-1782-x\times 648=5x\left(x-3\right)
Use the distributive property to multiply x-3 by 594.
594x-1782-x\times 648=5x^{2}-15x
Use the distributive property to multiply 5x by x-3.
594x-1782-x\times 648-5x^{2}=-15x
Subtract 5x^{2} from both sides.
594x-1782-x\times 648-5x^{2}+15x=0
Add 15x to both sides.
609x-1782-x\times 648-5x^{2}=0
Combine 594x and 15x to get 609x.
609x-x\times 648-5x^{2}=1782
Add 1782 to both sides. Anything plus zero gives itself.
609x-648x-5x^{2}=1782
Multiply -1 and 648 to get -648.
-39x-5x^{2}=1782
Combine 609x and -648x to get -39x.
-5x^{2}-39x=1782
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-39x}{-5}=\frac{1782}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{39}{-5}\right)x=\frac{1782}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+\frac{39}{5}x=\frac{1782}{-5}
Divide -39 by -5.
x^{2}+\frac{39}{5}x=-\frac{1782}{5}
Divide 1782 by -5.
x^{2}+\frac{39}{5}x+\left(\frac{39}{10}\right)^{2}=-\frac{1782}{5}+\left(\frac{39}{10}\right)^{2}
Divide \frac{39}{5}, the coefficient of the x term, by 2 to get \frac{39}{10}. Then add the square of \frac{39}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{39}{5}x+\frac{1521}{100}=-\frac{1782}{5}+\frac{1521}{100}
Square \frac{39}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{39}{5}x+\frac{1521}{100}=-\frac{34119}{100}
Add -\frac{1782}{5} to \frac{1521}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{39}{10}\right)^{2}=-\frac{34119}{100}
Factor x^{2}+\frac{39}{5}x+\frac{1521}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{39}{10}\right)^{2}}=\sqrt{-\frac{34119}{100}}
Take the square root of both sides of the equation.
x+\frac{39}{10}=\frac{3\sqrt{3791}i}{10} x+\frac{39}{10}=-\frac{3\sqrt{3791}i}{10}
Simplify.
x=\frac{-39+3\sqrt{3791}i}{10} x=\frac{-3\sqrt{3791}i-39}{10}
Subtract \frac{39}{10} from both sides of the equation.