Evaluate
\frac{593}{81}\approx 7.320987654
Factor
\frac{593}{3 ^ {4}} = 7\frac{26}{81} = 7.320987654320987
Share
Copied to clipboard
\begin{array}{l}\phantom{81)}\phantom{1}\\81\overline{)593}\\\end{array}
Use the 1^{st} digit 5 from dividend 593
\begin{array}{l}\phantom{81)}0\phantom{2}\\81\overline{)593}\\\end{array}
Since 5 is less than 81, use the next digit 9 from dividend 593 and add 0 to the quotient
\begin{array}{l}\phantom{81)}0\phantom{3}\\81\overline{)593}\\\end{array}
Use the 2^{nd} digit 9 from dividend 593
\begin{array}{l}\phantom{81)}00\phantom{4}\\81\overline{)593}\\\end{array}
Since 59 is less than 81, use the next digit 3 from dividend 593 and add 0 to the quotient
\begin{array}{l}\phantom{81)}00\phantom{5}\\81\overline{)593}\\\end{array}
Use the 3^{rd} digit 3 from dividend 593
\begin{array}{l}\phantom{81)}007\phantom{6}\\81\overline{)593}\\\phantom{81)}\underline{\phantom{}567\phantom{}}\\\phantom{81)9}26\\\end{array}
Find closest multiple of 81 to 593. We see that 7 \times 81 = 567 is the nearest. Now subtract 567 from 593 to get reminder 26. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }26
Since 26 is less than 81, stop the division. The reminder is 26. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}