Solve for x
x = \frac{2682532386}{40175} = 66771\frac{7461}{40175} \approx 66771.185712508
Graph
Share
Copied to clipboard
\frac{2960}{1607}\times 5\times 514\times 13+5231.92=x
Reduce the fraction \frac{5920}{3214} to lowest terms by extracting and canceling out 2.
\frac{2960\times 5}{1607}\times 514\times 13+5231.92=x
Express \frac{2960}{1607}\times 5 as a single fraction.
\frac{14800}{1607}\times 514\times 13+5231.92=x
Multiply 2960 and 5 to get 14800.
\frac{14800\times 514}{1607}\times 13+5231.92=x
Express \frac{14800}{1607}\times 514 as a single fraction.
\frac{7607200}{1607}\times 13+5231.92=x
Multiply 14800 and 514 to get 7607200.
\frac{7607200\times 13}{1607}+5231.92=x
Express \frac{7607200}{1607}\times 13 as a single fraction.
\frac{98893600}{1607}+5231.92=x
Multiply 7607200 and 13 to get 98893600.
\frac{98893600}{1607}+\frac{130798}{25}=x
Convert decimal number 5231.92 to fraction \frac{523192}{100}. Reduce the fraction \frac{523192}{100} to lowest terms by extracting and canceling out 4.
\frac{2472340000}{40175}+\frac{210192386}{40175}=x
Least common multiple of 1607 and 25 is 40175. Convert \frac{98893600}{1607} and \frac{130798}{25} to fractions with denominator 40175.
\frac{2472340000+210192386}{40175}=x
Since \frac{2472340000}{40175} and \frac{210192386}{40175} have the same denominator, add them by adding their numerators.
\frac{2682532386}{40175}=x
Add 2472340000 and 210192386 to get 2682532386.
x=\frac{2682532386}{40175}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}