Evaluate
\frac{576}{125}=4.608
Factor
\frac{2 ^ {6} \cdot 3 ^ {2}}{5 ^ {3}} = 4\frac{76}{125} = 4.608
Share
Copied to clipboard
\begin{array}{l}\phantom{125)}\phantom{1}\\125\overline{)576}\\\end{array}
Use the 1^{st} digit 5 from dividend 576
\begin{array}{l}\phantom{125)}0\phantom{2}\\125\overline{)576}\\\end{array}
Since 5 is less than 125, use the next digit 7 from dividend 576 and add 0 to the quotient
\begin{array}{l}\phantom{125)}0\phantom{3}\\125\overline{)576}\\\end{array}
Use the 2^{nd} digit 7 from dividend 576
\begin{array}{l}\phantom{125)}00\phantom{4}\\125\overline{)576}\\\end{array}
Since 57 is less than 125, use the next digit 6 from dividend 576 and add 0 to the quotient
\begin{array}{l}\phantom{125)}00\phantom{5}\\125\overline{)576}\\\end{array}
Use the 3^{rd} digit 6 from dividend 576
\begin{array}{l}\phantom{125)}004\phantom{6}\\125\overline{)576}\\\phantom{125)}\underline{\phantom{}500\phantom{}}\\\phantom{125)9}76\\\end{array}
Find closest multiple of 125 to 576. We see that 4 \times 125 = 500 is the nearest. Now subtract 500 from 576 to get reminder 76. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }76
Since 76 is less than 125, stop the division. The reminder is 76. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}