Solve for x
x=\frac{\sqrt{11481}}{100}-1\approx 0.071494284
x=-\frac{\sqrt{11481}}{100}-1\approx -2.071494284
Graph
Share
Copied to clipboard
\frac{57405}{50000}=\left(1+x\right)^{2}
Expand \frac{5740.5}{5000} by multiplying both numerator and the denominator by 10.
\frac{11481}{10000}=\left(1+x\right)^{2}
Reduce the fraction \frac{57405}{50000} to lowest terms by extracting and canceling out 5.
\frac{11481}{10000}=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1+2x+x^{2}=\frac{11481}{10000}
Swap sides so that all variable terms are on the left hand side.
1+2x+x^{2}-\frac{11481}{10000}=0
Subtract \frac{11481}{10000} from both sides.
-\frac{1481}{10000}+2x+x^{2}=0
Subtract \frac{11481}{10000} from 1 to get -\frac{1481}{10000}.
x^{2}+2x-\frac{1481}{10000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1481}{10000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -\frac{1481}{10000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1481}{10000}\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+\frac{1481}{2500}}}{2}
Multiply -4 times -\frac{1481}{10000}.
x=\frac{-2±\sqrt{\frac{11481}{2500}}}{2}
Add 4 to \frac{1481}{2500}.
x=\frac{-2±\frac{\sqrt{11481}}{50}}{2}
Take the square root of \frac{11481}{2500}.
x=\frac{\frac{\sqrt{11481}}{50}-2}{2}
Now solve the equation x=\frac{-2±\frac{\sqrt{11481}}{50}}{2} when ± is plus. Add -2 to \frac{\sqrt{11481}}{50}.
x=\frac{\sqrt{11481}}{100}-1
Divide -2+\frac{\sqrt{11481}}{50} by 2.
x=\frac{-\frac{\sqrt{11481}}{50}-2}{2}
Now solve the equation x=\frac{-2±\frac{\sqrt{11481}}{50}}{2} when ± is minus. Subtract \frac{\sqrt{11481}}{50} from -2.
x=-\frac{\sqrt{11481}}{100}-1
Divide -2-\frac{\sqrt{11481}}{50} by 2.
x=\frac{\sqrt{11481}}{100}-1 x=-\frac{\sqrt{11481}}{100}-1
The equation is now solved.
\frac{57405}{50000}=\left(1+x\right)^{2}
Expand \frac{5740.5}{5000} by multiplying both numerator and the denominator by 10.
\frac{11481}{10000}=\left(1+x\right)^{2}
Reduce the fraction \frac{57405}{50000} to lowest terms by extracting and canceling out 5.
\frac{11481}{10000}=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1+2x+x^{2}=\frac{11481}{10000}
Swap sides so that all variable terms are on the left hand side.
2x+x^{2}=\frac{11481}{10000}-1
Subtract 1 from both sides.
2x+x^{2}=\frac{1481}{10000}
Subtract 1 from \frac{11481}{10000} to get \frac{1481}{10000}.
x^{2}+2x=\frac{1481}{10000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+2x+1^{2}=\frac{1481}{10000}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{1481}{10000}+1
Square 1.
x^{2}+2x+1=\frac{11481}{10000}
Add \frac{1481}{10000} to 1.
\left(x+1\right)^{2}=\frac{11481}{10000}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{11481}{10000}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{11481}}{100} x+1=-\frac{\sqrt{11481}}{100}
Simplify.
x=\frac{\sqrt{11481}}{100}-1 x=-\frac{\sqrt{11481}}{100}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}