Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{\left(5\sqrt{3}-3\sqrt{2}\right)\left(5\sqrt{3}+3\sqrt{2}\right)}
Rationalize the denominator of \frac{57}{5\sqrt{3}-3\sqrt{2}} by multiplying numerator and denominator by 5\sqrt{3}+3\sqrt{2}.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{\left(5\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Consider \left(5\sqrt{3}-3\sqrt{2}\right)\left(5\sqrt{3}+3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{25\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{25\times 3-\left(-3\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{75-\left(-3\sqrt{2}\right)^{2}}
Multiply 25 and 3 to get 75.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{75-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-3\sqrt{2}\right)^{2}.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{75-9\left(\sqrt{2}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{75-9\times 2}
The square of \sqrt{2} is 2.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{75-18}
Multiply 9 and 2 to get 18.
\frac{57\left(5\sqrt{3}+3\sqrt{2}\right)}{57}
Subtract 18 from 75 to get 57.
5\sqrt{3}+3\sqrt{2}
Cancel out 57 and 57.