Evaluate
\frac{471202}{293731}\approx 1.604195676
Factor
\frac{2 \cdot 235601}{239 \cdot 1229} = 1\frac{177471}{293731} = 1.60419567563519
Share
Copied to clipboard
\begin{array}{l}\phantom{3524772)}\phantom{1}\\3524772\overline{)5654424}\\\end{array}
Use the 1^{st} digit 5 from dividend 5654424
\begin{array}{l}\phantom{3524772)}0\phantom{2}\\3524772\overline{)5654424}\\\end{array}
Since 5 is less than 3524772, use the next digit 6 from dividend 5654424 and add 0 to the quotient
\begin{array}{l}\phantom{3524772)}0\phantom{3}\\3524772\overline{)5654424}\\\end{array}
Use the 2^{nd} digit 6 from dividend 5654424
\begin{array}{l}\phantom{3524772)}00\phantom{4}\\3524772\overline{)5654424}\\\end{array}
Since 56 is less than 3524772, use the next digit 5 from dividend 5654424 and add 0 to the quotient
\begin{array}{l}\phantom{3524772)}00\phantom{5}\\3524772\overline{)5654424}\\\end{array}
Use the 3^{rd} digit 5 from dividend 5654424
\begin{array}{l}\phantom{3524772)}000\phantom{6}\\3524772\overline{)5654424}\\\end{array}
Since 565 is less than 3524772, use the next digit 4 from dividend 5654424 and add 0 to the quotient
\begin{array}{l}\phantom{3524772)}000\phantom{7}\\3524772\overline{)5654424}\\\end{array}
Use the 4^{th} digit 4 from dividend 5654424
\begin{array}{l}\phantom{3524772)}0000\phantom{8}\\3524772\overline{)5654424}\\\end{array}
Since 5654 is less than 3524772, use the next digit 4 from dividend 5654424 and add 0 to the quotient
\begin{array}{l}\phantom{3524772)}0000\phantom{9}\\3524772\overline{)5654424}\\\end{array}
Use the 5^{th} digit 4 from dividend 5654424
\begin{array}{l}\phantom{3524772)}00000\phantom{10}\\3524772\overline{)5654424}\\\end{array}
Since 56544 is less than 3524772, use the next digit 2 from dividend 5654424 and add 0 to the quotient
\begin{array}{l}\phantom{3524772)}00000\phantom{11}\\3524772\overline{)5654424}\\\end{array}
Use the 6^{th} digit 2 from dividend 5654424
\begin{array}{l}\phantom{3524772)}000000\phantom{12}\\3524772\overline{)5654424}\\\end{array}
Since 565442 is less than 3524772, use the next digit 4 from dividend 5654424 and add 0 to the quotient
\begin{array}{l}\phantom{3524772)}000000\phantom{13}\\3524772\overline{)5654424}\\\end{array}
Use the 7^{th} digit 4 from dividend 5654424
\begin{array}{l}\phantom{3524772)}0000001\phantom{14}\\3524772\overline{)5654424}\\\phantom{3524772)}\underline{\phantom{}3524772\phantom{}}\\\phantom{3524772)}2129652\\\end{array}
Find closest multiple of 3524772 to 5654424. We see that 1 \times 3524772 = 3524772 is the nearest. Now subtract 3524772 from 5654424 to get reminder 2129652. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2129652
Since 2129652 is less than 3524772, stop the division. The reminder is 2129652. The topmost line 0000001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}