Evaluate
\frac{141}{16}=8.8125
Factor
\frac{3 \cdot 47}{2 ^ {4}} = 8\frac{13}{16} = 8.8125
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)564}\\\end{array}
Use the 1^{st} digit 5 from dividend 564
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)564}\\\end{array}
Since 5 is less than 64, use the next digit 6 from dividend 564 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)564}\\\end{array}
Use the 2^{nd} digit 6 from dividend 564
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)564}\\\end{array}
Since 56 is less than 64, use the next digit 4 from dividend 564 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)564}\\\end{array}
Use the 3^{rd} digit 4 from dividend 564
\begin{array}{l}\phantom{64)}008\phantom{6}\\64\overline{)564}\\\phantom{64)}\underline{\phantom{}512\phantom{}}\\\phantom{64)9}52\\\end{array}
Find closest multiple of 64 to 564. We see that 8 \times 64 = 512 is the nearest. Now subtract 512 from 564 to get reminder 52. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }52
Since 52 is less than 64, stop the division. The reminder is 52. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}