Evaluate
\frac{80318}{3795}\approx 21.164163373
Factor
\frac{2 \cdot 7 \cdot 5737}{3 \cdot 5 \cdot 11 \cdot 23} = 21\frac{623}{3795} = 21.164163372859026
Share
Copied to clipboard
\begin{array}{l}\phantom{26565)}\phantom{1}\\26565\overline{)562226}\\\end{array}
Use the 1^{st} digit 5 from dividend 562226
\begin{array}{l}\phantom{26565)}0\phantom{2}\\26565\overline{)562226}\\\end{array}
Since 5 is less than 26565, use the next digit 6 from dividend 562226 and add 0 to the quotient
\begin{array}{l}\phantom{26565)}0\phantom{3}\\26565\overline{)562226}\\\end{array}
Use the 2^{nd} digit 6 from dividend 562226
\begin{array}{l}\phantom{26565)}00\phantom{4}\\26565\overline{)562226}\\\end{array}
Since 56 is less than 26565, use the next digit 2 from dividend 562226 and add 0 to the quotient
\begin{array}{l}\phantom{26565)}00\phantom{5}\\26565\overline{)562226}\\\end{array}
Use the 3^{rd} digit 2 from dividend 562226
\begin{array}{l}\phantom{26565)}000\phantom{6}\\26565\overline{)562226}\\\end{array}
Since 562 is less than 26565, use the next digit 2 from dividend 562226 and add 0 to the quotient
\begin{array}{l}\phantom{26565)}000\phantom{7}\\26565\overline{)562226}\\\end{array}
Use the 4^{th} digit 2 from dividend 562226
\begin{array}{l}\phantom{26565)}0000\phantom{8}\\26565\overline{)562226}\\\end{array}
Since 5622 is less than 26565, use the next digit 2 from dividend 562226 and add 0 to the quotient
\begin{array}{l}\phantom{26565)}0000\phantom{9}\\26565\overline{)562226}\\\end{array}
Use the 5^{th} digit 2 from dividend 562226
\begin{array}{l}\phantom{26565)}00002\phantom{10}\\26565\overline{)562226}\\\phantom{26565)}\underline{\phantom{}53130\phantom{9}}\\\phantom{26565)9}3092\\\end{array}
Find closest multiple of 26565 to 56222. We see that 2 \times 26565 = 53130 is the nearest. Now subtract 53130 from 56222 to get reminder 3092. Add 2 to quotient.
\begin{array}{l}\phantom{26565)}00002\phantom{11}\\26565\overline{)562226}\\\phantom{26565)}\underline{\phantom{}53130\phantom{9}}\\\phantom{26565)9}30926\\\end{array}
Use the 6^{th} digit 6 from dividend 562226
\begin{array}{l}\phantom{26565)}000021\phantom{12}\\26565\overline{)562226}\\\phantom{26565)}\underline{\phantom{}53130\phantom{9}}\\\phantom{26565)9}30926\\\phantom{26565)}\underline{\phantom{9}26565\phantom{}}\\\phantom{26565)99}4361\\\end{array}
Find closest multiple of 26565 to 30926. We see that 1 \times 26565 = 26565 is the nearest. Now subtract 26565 from 30926 to get reminder 4361. Add 1 to quotient.
\text{Quotient: }21 \text{Reminder: }4361
Since 4361 is less than 26565, stop the division. The reminder is 4361. The topmost line 000021 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}