Evaluate
\frac{5611}{1058}\approx 5.303402647
Factor
\frac{31 \cdot 181}{2 \cdot 23 ^ {2}} = 5\frac{321}{1058} = 5.303402646502835
Share
Copied to clipboard
\begin{array}{l}\phantom{1058)}\phantom{1}\\1058\overline{)5611}\\\end{array}
Use the 1^{st} digit 5 from dividend 5611
\begin{array}{l}\phantom{1058)}0\phantom{2}\\1058\overline{)5611}\\\end{array}
Since 5 is less than 1058, use the next digit 6 from dividend 5611 and add 0 to the quotient
\begin{array}{l}\phantom{1058)}0\phantom{3}\\1058\overline{)5611}\\\end{array}
Use the 2^{nd} digit 6 from dividend 5611
\begin{array}{l}\phantom{1058)}00\phantom{4}\\1058\overline{)5611}\\\end{array}
Since 56 is less than 1058, use the next digit 1 from dividend 5611 and add 0 to the quotient
\begin{array}{l}\phantom{1058)}00\phantom{5}\\1058\overline{)5611}\\\end{array}
Use the 3^{rd} digit 1 from dividend 5611
\begin{array}{l}\phantom{1058)}000\phantom{6}\\1058\overline{)5611}\\\end{array}
Since 561 is less than 1058, use the next digit 1 from dividend 5611 and add 0 to the quotient
\begin{array}{l}\phantom{1058)}000\phantom{7}\\1058\overline{)5611}\\\end{array}
Use the 4^{th} digit 1 from dividend 5611
\begin{array}{l}\phantom{1058)}0005\phantom{8}\\1058\overline{)5611}\\\phantom{1058)}\underline{\phantom{}5290\phantom{}}\\\phantom{1058)9}321\\\end{array}
Find closest multiple of 1058 to 5611. We see that 5 \times 1058 = 5290 is the nearest. Now subtract 5290 from 5611 to get reminder 321. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }321
Since 321 is less than 1058, stop the division. The reminder is 321. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}