Evaluate
\frac{5555651}{5155}\approx 1077.72085354
Factor
\frac{17 \cdot 281 \cdot 1163}{5 \cdot 1031} = 1077\frac{3716}{5155} = 1077.7208535402522
Share
Copied to clipboard
\begin{array}{l}\phantom{5155)}\phantom{1}\\5155\overline{)5555651}\\\end{array}
Use the 1^{st} digit 5 from dividend 5555651
\begin{array}{l}\phantom{5155)}0\phantom{2}\\5155\overline{)5555651}\\\end{array}
Since 5 is less than 5155, use the next digit 5 from dividend 5555651 and add 0 to the quotient
\begin{array}{l}\phantom{5155)}0\phantom{3}\\5155\overline{)5555651}\\\end{array}
Use the 2^{nd} digit 5 from dividend 5555651
\begin{array}{l}\phantom{5155)}00\phantom{4}\\5155\overline{)5555651}\\\end{array}
Since 55 is less than 5155, use the next digit 5 from dividend 5555651 and add 0 to the quotient
\begin{array}{l}\phantom{5155)}00\phantom{5}\\5155\overline{)5555651}\\\end{array}
Use the 3^{rd} digit 5 from dividend 5555651
\begin{array}{l}\phantom{5155)}000\phantom{6}\\5155\overline{)5555651}\\\end{array}
Since 555 is less than 5155, use the next digit 5 from dividend 5555651 and add 0 to the quotient
\begin{array}{l}\phantom{5155)}000\phantom{7}\\5155\overline{)5555651}\\\end{array}
Use the 4^{th} digit 5 from dividend 5555651
\begin{array}{l}\phantom{5155)}0001\phantom{8}\\5155\overline{)5555651}\\\phantom{5155)}\underline{\phantom{}5155\phantom{999}}\\\phantom{5155)9}400\\\end{array}
Find closest multiple of 5155 to 5555. We see that 1 \times 5155 = 5155 is the nearest. Now subtract 5155 from 5555 to get reminder 400. Add 1 to quotient.
\begin{array}{l}\phantom{5155)}0001\phantom{9}\\5155\overline{)5555651}\\\phantom{5155)}\underline{\phantom{}5155\phantom{999}}\\\phantom{5155)9}4006\\\end{array}
Use the 5^{th} digit 6 from dividend 5555651
\begin{array}{l}\phantom{5155)}00010\phantom{10}\\5155\overline{)5555651}\\\phantom{5155)}\underline{\phantom{}5155\phantom{999}}\\\phantom{5155)9}4006\\\end{array}
Since 4006 is less than 5155, use the next digit 5 from dividend 5555651 and add 0 to the quotient
\begin{array}{l}\phantom{5155)}00010\phantom{11}\\5155\overline{)5555651}\\\phantom{5155)}\underline{\phantom{}5155\phantom{999}}\\\phantom{5155)9}40065\\\end{array}
Use the 6^{th} digit 5 from dividend 5555651
\begin{array}{l}\phantom{5155)}000107\phantom{12}\\5155\overline{)5555651}\\\phantom{5155)}\underline{\phantom{}5155\phantom{999}}\\\phantom{5155)9}40065\\\phantom{5155)}\underline{\phantom{9}36085\phantom{9}}\\\phantom{5155)99}3980\\\end{array}
Find closest multiple of 5155 to 40065. We see that 7 \times 5155 = 36085 is the nearest. Now subtract 36085 from 40065 to get reminder 3980. Add 7 to quotient.
\begin{array}{l}\phantom{5155)}000107\phantom{13}\\5155\overline{)5555651}\\\phantom{5155)}\underline{\phantom{}5155\phantom{999}}\\\phantom{5155)9}40065\\\phantom{5155)}\underline{\phantom{9}36085\phantom{9}}\\\phantom{5155)99}39801\\\end{array}
Use the 7^{th} digit 1 from dividend 5555651
\begin{array}{l}\phantom{5155)}0001077\phantom{14}\\5155\overline{)5555651}\\\phantom{5155)}\underline{\phantom{}5155\phantom{999}}\\\phantom{5155)9}40065\\\phantom{5155)}\underline{\phantom{9}36085\phantom{9}}\\\phantom{5155)99}39801\\\phantom{5155)}\underline{\phantom{99}36085\phantom{}}\\\phantom{5155)999}3716\\\end{array}
Find closest multiple of 5155 to 39801. We see that 7 \times 5155 = 36085 is the nearest. Now subtract 36085 from 39801 to get reminder 3716. Add 7 to quotient.
\text{Quotient: }1077 \text{Reminder: }3716
Since 3716 is less than 5155, stop the division. The reminder is 3716. The topmost line 0001077 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1077.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}