Evaluate
\frac{55327}{18000}\approx 3.073722222
Factor
\frac{61 \cdot 907}{2 ^ {4} \cdot 3 ^ {2} \cdot 5 ^ {3}} = 3\frac{1327}{18000} = 3.073722222222222
Share
Copied to clipboard
\begin{array}{l}\phantom{18000)}\phantom{1}\\18000\overline{)55327}\\\end{array}
Use the 1^{st} digit 5 from dividend 55327
\begin{array}{l}\phantom{18000)}0\phantom{2}\\18000\overline{)55327}\\\end{array}
Since 5 is less than 18000, use the next digit 5 from dividend 55327 and add 0 to the quotient
\begin{array}{l}\phantom{18000)}0\phantom{3}\\18000\overline{)55327}\\\end{array}
Use the 2^{nd} digit 5 from dividend 55327
\begin{array}{l}\phantom{18000)}00\phantom{4}\\18000\overline{)55327}\\\end{array}
Since 55 is less than 18000, use the next digit 3 from dividend 55327 and add 0 to the quotient
\begin{array}{l}\phantom{18000)}00\phantom{5}\\18000\overline{)55327}\\\end{array}
Use the 3^{rd} digit 3 from dividend 55327
\begin{array}{l}\phantom{18000)}000\phantom{6}\\18000\overline{)55327}\\\end{array}
Since 553 is less than 18000, use the next digit 2 from dividend 55327 and add 0 to the quotient
\begin{array}{l}\phantom{18000)}000\phantom{7}\\18000\overline{)55327}\\\end{array}
Use the 4^{th} digit 2 from dividend 55327
\begin{array}{l}\phantom{18000)}0000\phantom{8}\\18000\overline{)55327}\\\end{array}
Since 5532 is less than 18000, use the next digit 7 from dividend 55327 and add 0 to the quotient
\begin{array}{l}\phantom{18000)}0000\phantom{9}\\18000\overline{)55327}\\\end{array}
Use the 5^{th} digit 7 from dividend 55327
\begin{array}{l}\phantom{18000)}00003\phantom{10}\\18000\overline{)55327}\\\phantom{18000)}\underline{\phantom{}54000\phantom{}}\\\phantom{18000)9}1327\\\end{array}
Find closest multiple of 18000 to 55327. We see that 3 \times 18000 = 54000 is the nearest. Now subtract 54000 from 55327 to get reminder 1327. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }1327
Since 1327 is less than 18000, stop the division. The reminder is 1327. The topmost line 00003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}