Evaluate
\frac{55}{14}\approx 3.928571429
Factor
\frac{5 \cdot 11}{2 \cdot 7} = 3\frac{13}{14} = 3.9285714285714284
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)55}\\\end{array}
Use the 1^{st} digit 5 from dividend 55
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)55}\\\end{array}
Since 5 is less than 14, use the next digit 5 from dividend 55 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)55}\\\end{array}
Use the 2^{nd} digit 5 from dividend 55
\begin{array}{l}\phantom{14)}03\phantom{4}\\14\overline{)55}\\\phantom{14)}\underline{\phantom{}42\phantom{}}\\\phantom{14)}13\\\end{array}
Find closest multiple of 14 to 55. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 55 to get reminder 13. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }13
Since 13 is less than 14, stop the division. The reminder is 13. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}