Evaluate
\frac{136}{75}\approx 1.813333333
Factor
\frac{2 ^ {3} \cdot 17}{3 \cdot 5 ^ {2}} = 1\frac{61}{75} = 1.8133333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)544}\\\end{array}
Use the 1^{st} digit 5 from dividend 544
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)544}\\\end{array}
Since 5 is less than 300, use the next digit 4 from dividend 544 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)544}\\\end{array}
Use the 2^{nd} digit 4 from dividend 544
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)544}\\\end{array}
Since 54 is less than 300, use the next digit 4 from dividend 544 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)544}\\\end{array}
Use the 3^{rd} digit 4 from dividend 544
\begin{array}{l}\phantom{300)}001\phantom{6}\\300\overline{)544}\\\phantom{300)}\underline{\phantom{}300\phantom{}}\\\phantom{300)}244\\\end{array}
Find closest multiple of 300 to 544. We see that 1 \times 300 = 300 is the nearest. Now subtract 300 from 544 to get reminder 244. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }244
Since 244 is less than 300, stop the division. The reminder is 244. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}