Evaluate
5762.629856-62\sqrt{16354}\approx -2166.101190012
Factor
\frac{180082183 - 1937500 \sqrt{16354}}{31250} = -2166.1011900123444
Share
Copied to clipboard
\frac{54}{25}\times 0.2916+5762-\sqrt{62864776}
Calculate 0.54 to the power of 2 and get 0.2916.
\frac{54}{25}\times \frac{729}{2500}+5762-\sqrt{62864776}
Convert decimal number 0.2916 to fraction \frac{2916}{10000}. Reduce the fraction \frac{2916}{10000} to lowest terms by extracting and canceling out 4.
\frac{54\times 729}{25\times 2500}+5762-\sqrt{62864776}
Multiply \frac{54}{25} times \frac{729}{2500} by multiplying numerator times numerator and denominator times denominator.
\frac{39366}{62500}+5762-\sqrt{62864776}
Do the multiplications in the fraction \frac{54\times 729}{25\times 2500}.
\frac{19683}{31250}+5762-\sqrt{62864776}
Reduce the fraction \frac{39366}{62500} to lowest terms by extracting and canceling out 2.
\frac{19683}{31250}+\frac{180062500}{31250}-\sqrt{62864776}
Convert 5762 to fraction \frac{180062500}{31250}.
\frac{19683+180062500}{31250}-\sqrt{62864776}
Since \frac{19683}{31250} and \frac{180062500}{31250} have the same denominator, add them by adding their numerators.
\frac{180082183}{31250}-\sqrt{62864776}
Add 19683 and 180062500 to get 180082183.
\frac{180082183}{31250}-62\sqrt{16354}
Factor 62864776=62^{2}\times 16354. Rewrite the square root of the product \sqrt{62^{2}\times 16354} as the product of square roots \sqrt{62^{2}}\sqrt{16354}. Take the square root of 62^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}