Solve for x
x=\frac{\sqrt{2761}-59}{6}\approx -1.075796896
x=\frac{-\sqrt{2761}-59}{6}\approx -18.59086977
Graph
Share
Copied to clipboard
-\left(15+x\right)\times 54-\left(x-15\right)\times 5=3\left(x-15\right)\left(x+15\right)
Variable x cannot be equal to any of the values -15,15 since division by zero is not defined. Multiply both sides of the equation by \left(x-15\right)\left(x+15\right), the least common multiple of 15-x,15+x.
\left(-15-x\right)\times 54-\left(x-15\right)\times 5=3\left(x-15\right)\left(x+15\right)
To find the opposite of 15+x, find the opposite of each term.
-810-54x-\left(x-15\right)\times 5=3\left(x-15\right)\left(x+15\right)
Use the distributive property to multiply -15-x by 54.
-810-54x-\left(5x-75\right)=3\left(x-15\right)\left(x+15\right)
Use the distributive property to multiply x-15 by 5.
-810-54x-5x+75=3\left(x-15\right)\left(x+15\right)
To find the opposite of 5x-75, find the opposite of each term.
-810-59x+75=3\left(x-15\right)\left(x+15\right)
Combine -54x and -5x to get -59x.
-735-59x=3\left(x-15\right)\left(x+15\right)
Add -810 and 75 to get -735.
-735-59x=\left(3x-45\right)\left(x+15\right)
Use the distributive property to multiply 3 by x-15.
-735-59x=3x^{2}-675
Use the distributive property to multiply 3x-45 by x+15 and combine like terms.
-735-59x-3x^{2}=-675
Subtract 3x^{2} from both sides.
-735-59x-3x^{2}+675=0
Add 675 to both sides.
-60-59x-3x^{2}=0
Add -735 and 675 to get -60.
-3x^{2}-59x-60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-59\right)±\sqrt{\left(-59\right)^{2}-4\left(-3\right)\left(-60\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -59 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-59\right)±\sqrt{3481-4\left(-3\right)\left(-60\right)}}{2\left(-3\right)}
Square -59.
x=\frac{-\left(-59\right)±\sqrt{3481+12\left(-60\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-59\right)±\sqrt{3481-720}}{2\left(-3\right)}
Multiply 12 times -60.
x=\frac{-\left(-59\right)±\sqrt{2761}}{2\left(-3\right)}
Add 3481 to -720.
x=\frac{59±\sqrt{2761}}{2\left(-3\right)}
The opposite of -59 is 59.
x=\frac{59±\sqrt{2761}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{2761}+59}{-6}
Now solve the equation x=\frac{59±\sqrt{2761}}{-6} when ± is plus. Add 59 to \sqrt{2761}.
x=\frac{-\sqrt{2761}-59}{6}
Divide 59+\sqrt{2761} by -6.
x=\frac{59-\sqrt{2761}}{-6}
Now solve the equation x=\frac{59±\sqrt{2761}}{-6} when ± is minus. Subtract \sqrt{2761} from 59.
x=\frac{\sqrt{2761}-59}{6}
Divide 59-\sqrt{2761} by -6.
x=\frac{-\sqrt{2761}-59}{6} x=\frac{\sqrt{2761}-59}{6}
The equation is now solved.
-\left(15+x\right)\times 54-\left(x-15\right)\times 5=3\left(x-15\right)\left(x+15\right)
Variable x cannot be equal to any of the values -15,15 since division by zero is not defined. Multiply both sides of the equation by \left(x-15\right)\left(x+15\right), the least common multiple of 15-x,15+x.
\left(-15-x\right)\times 54-\left(x-15\right)\times 5=3\left(x-15\right)\left(x+15\right)
To find the opposite of 15+x, find the opposite of each term.
-810-54x-\left(x-15\right)\times 5=3\left(x-15\right)\left(x+15\right)
Use the distributive property to multiply -15-x by 54.
-810-54x-\left(5x-75\right)=3\left(x-15\right)\left(x+15\right)
Use the distributive property to multiply x-15 by 5.
-810-54x-5x+75=3\left(x-15\right)\left(x+15\right)
To find the opposite of 5x-75, find the opposite of each term.
-810-59x+75=3\left(x-15\right)\left(x+15\right)
Combine -54x and -5x to get -59x.
-735-59x=3\left(x-15\right)\left(x+15\right)
Add -810 and 75 to get -735.
-735-59x=\left(3x-45\right)\left(x+15\right)
Use the distributive property to multiply 3 by x-15.
-735-59x=3x^{2}-675
Use the distributive property to multiply 3x-45 by x+15 and combine like terms.
-735-59x-3x^{2}=-675
Subtract 3x^{2} from both sides.
-59x-3x^{2}=-675+735
Add 735 to both sides.
-59x-3x^{2}=60
Add -675 and 735 to get 60.
-3x^{2}-59x=60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-59x}{-3}=\frac{60}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{59}{-3}\right)x=\frac{60}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{59}{3}x=\frac{60}{-3}
Divide -59 by -3.
x^{2}+\frac{59}{3}x=-20
Divide 60 by -3.
x^{2}+\frac{59}{3}x+\left(\frac{59}{6}\right)^{2}=-20+\left(\frac{59}{6}\right)^{2}
Divide \frac{59}{3}, the coefficient of the x term, by 2 to get \frac{59}{6}. Then add the square of \frac{59}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{59}{3}x+\frac{3481}{36}=-20+\frac{3481}{36}
Square \frac{59}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{59}{3}x+\frac{3481}{36}=\frac{2761}{36}
Add -20 to \frac{3481}{36}.
\left(x+\frac{59}{6}\right)^{2}=\frac{2761}{36}
Factor x^{2}+\frac{59}{3}x+\frac{3481}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{59}{6}\right)^{2}}=\sqrt{\frac{2761}{36}}
Take the square root of both sides of the equation.
x+\frac{59}{6}=\frac{\sqrt{2761}}{6} x+\frac{59}{6}=-\frac{\sqrt{2761}}{6}
Simplify.
x=\frac{\sqrt{2761}-59}{6} x=\frac{-\sqrt{2761}-59}{6}
Subtract \frac{59}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}