Evaluate
\frac{53}{12}\approx 4.416666667
Factor
\frac{53}{2 ^ {2} \cdot 3} = 4\frac{5}{12} = 4.416666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)53}\\\end{array}
Use the 1^{st} digit 5 from dividend 53
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)53}\\\end{array}
Since 5 is less than 12, use the next digit 3 from dividend 53 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)53}\\\end{array}
Use the 2^{nd} digit 3 from dividend 53
\begin{array}{l}\phantom{12)}04\phantom{4}\\12\overline{)53}\\\phantom{12)}\underline{\phantom{}48\phantom{}}\\\phantom{12)9}5\\\end{array}
Find closest multiple of 12 to 53. We see that 4 \times 12 = 48 is the nearest. Now subtract 48 from 53 to get reminder 5. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }5
Since 5 is less than 12, stop the division. The reminder is 5. The topmost line 04 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}