Evaluate
\frac{22}{15}\approx 1.466666667
Factor
\frac{2 \cdot 11}{3 \cdot 5} = 1\frac{7}{15} = 1.4666666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)528}\\\end{array}
Use the 1^{st} digit 5 from dividend 528
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)528}\\\end{array}
Since 5 is less than 360, use the next digit 2 from dividend 528 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)528}\\\end{array}
Use the 2^{nd} digit 2 from dividend 528
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)528}\\\end{array}
Since 52 is less than 360, use the next digit 8 from dividend 528 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)528}\\\end{array}
Use the 3^{rd} digit 8 from dividend 528
\begin{array}{l}\phantom{360)}001\phantom{6}\\360\overline{)528}\\\phantom{360)}\underline{\phantom{}360\phantom{}}\\\phantom{360)}168\\\end{array}
Find closest multiple of 360 to 528. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 528 to get reminder 168. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }168
Since 168 is less than 360, stop the division. The reminder is 168. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}