Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{225)}\phantom{1}\\225\overline{)525}\\\end{array}
Use the 1^{st} digit 5 from dividend 525
\begin{array}{l}\phantom{225)}0\phantom{2}\\225\overline{)525}\\\end{array}
Since 5 is less than 225, use the next digit 2 from dividend 525 and add 0 to the quotient
\begin{array}{l}\phantom{225)}0\phantom{3}\\225\overline{)525}\\\end{array}
Use the 2^{nd} digit 2 from dividend 525
\begin{array}{l}\phantom{225)}00\phantom{4}\\225\overline{)525}\\\end{array}
Since 52 is less than 225, use the next digit 5 from dividend 525 and add 0 to the quotient
\begin{array}{l}\phantom{225)}00\phantom{5}\\225\overline{)525}\\\end{array}
Use the 3^{rd} digit 5 from dividend 525
\begin{array}{l}\phantom{225)}002\phantom{6}\\225\overline{)525}\\\phantom{225)}\underline{\phantom{}450\phantom{}}\\\phantom{225)9}75\\\end{array}
Find closest multiple of 225 to 525. We see that 2 \times 225 = 450 is the nearest. Now subtract 450 from 525 to get reminder 75. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }75
Since 75 is less than 225, stop the division. The reminder is 75. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}