Solve for x
x = \frac{54}{43} = 1\frac{11}{43} \approx 1.255813953
x=0
Graph
Share
Copied to clipboard
\frac{52}{9}x^{2}-12x+9-x^{2}=-6x+9
Subtract x^{2} from both sides.
\frac{43}{9}x^{2}-12x+9=-6x+9
Combine \frac{52}{9}x^{2} and -x^{2} to get \frac{43}{9}x^{2}.
\frac{43}{9}x^{2}-12x+9+6x=9
Add 6x to both sides.
\frac{43}{9}x^{2}-6x+9=9
Combine -12x and 6x to get -6x.
\frac{43}{9}x^{2}-6x+9-9=0
Subtract 9 from both sides.
\frac{43}{9}x^{2}-6x=0
Subtract 9 from 9 to get 0.
x\left(\frac{43}{9}x-6\right)=0
Factor out x.
x=0 x=\frac{54}{43}
To find equation solutions, solve x=0 and \frac{43x}{9}-6=0.
\frac{52}{9}x^{2}-12x+9-x^{2}=-6x+9
Subtract x^{2} from both sides.
\frac{43}{9}x^{2}-12x+9=-6x+9
Combine \frac{52}{9}x^{2} and -x^{2} to get \frac{43}{9}x^{2}.
\frac{43}{9}x^{2}-12x+9+6x=9
Add 6x to both sides.
\frac{43}{9}x^{2}-6x+9=9
Combine -12x and 6x to get -6x.
\frac{43}{9}x^{2}-6x+9-9=0
Subtract 9 from both sides.
\frac{43}{9}x^{2}-6x=0
Subtract 9 from 9 to get 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times \frac{43}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{43}{9} for a, -6 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±6}{2\times \frac{43}{9}}
Take the square root of \left(-6\right)^{2}.
x=\frac{6±6}{2\times \frac{43}{9}}
The opposite of -6 is 6.
x=\frac{6±6}{\frac{86}{9}}
Multiply 2 times \frac{43}{9}.
x=\frac{12}{\frac{86}{9}}
Now solve the equation x=\frac{6±6}{\frac{86}{9}} when ± is plus. Add 6 to 6.
x=\frac{54}{43}
Divide 12 by \frac{86}{9} by multiplying 12 by the reciprocal of \frac{86}{9}.
x=\frac{0}{\frac{86}{9}}
Now solve the equation x=\frac{6±6}{\frac{86}{9}} when ± is minus. Subtract 6 from 6.
x=0
Divide 0 by \frac{86}{9} by multiplying 0 by the reciprocal of \frac{86}{9}.
x=\frac{54}{43} x=0
The equation is now solved.
\frac{52}{9}x^{2}-12x+9-x^{2}=-6x+9
Subtract x^{2} from both sides.
\frac{43}{9}x^{2}-12x+9=-6x+9
Combine \frac{52}{9}x^{2} and -x^{2} to get \frac{43}{9}x^{2}.
\frac{43}{9}x^{2}-12x+9+6x=9
Add 6x to both sides.
\frac{43}{9}x^{2}-6x+9=9
Combine -12x and 6x to get -6x.
\frac{43}{9}x^{2}-6x=9-9
Subtract 9 from both sides.
\frac{43}{9}x^{2}-6x=0
Subtract 9 from 9 to get 0.
\frac{\frac{43}{9}x^{2}-6x}{\frac{43}{9}}=\frac{0}{\frac{43}{9}}
Divide both sides of the equation by \frac{43}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{6}{\frac{43}{9}}\right)x=\frac{0}{\frac{43}{9}}
Dividing by \frac{43}{9} undoes the multiplication by \frac{43}{9}.
x^{2}-\frac{54}{43}x=\frac{0}{\frac{43}{9}}
Divide -6 by \frac{43}{9} by multiplying -6 by the reciprocal of \frac{43}{9}.
x^{2}-\frac{54}{43}x=0
Divide 0 by \frac{43}{9} by multiplying 0 by the reciprocal of \frac{43}{9}.
x^{2}-\frac{54}{43}x+\left(-\frac{27}{43}\right)^{2}=\left(-\frac{27}{43}\right)^{2}
Divide -\frac{54}{43}, the coefficient of the x term, by 2 to get -\frac{27}{43}. Then add the square of -\frac{27}{43} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{54}{43}x+\frac{729}{1849}=\frac{729}{1849}
Square -\frac{27}{43} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{27}{43}\right)^{2}=\frac{729}{1849}
Factor x^{2}-\frac{54}{43}x+\frac{729}{1849}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{43}\right)^{2}}=\sqrt{\frac{729}{1849}}
Take the square root of both sides of the equation.
x-\frac{27}{43}=\frac{27}{43} x-\frac{27}{43}=-\frac{27}{43}
Simplify.
x=\frac{54}{43} x=0
Add \frac{27}{43} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}